An Artificial Olfactory Chemical‐Resistant Synapse for Training‐Free Gas Recognition

突触 神经科学 嗅觉系统 计算机科学 人工智能 心理学
作者
Fangzhen Hu,Chenkai Cao,Sancan Han,Ding Wang,Xi Chen
出处
期刊:Advanced materials and technologies [Wiley]
卷期号:9 (7) 被引量:4
标识
DOI:10.1002/admt.202301814
摘要

Abstract Transferring the concept of chemical‐driven responses into artificial intelligence technology holds the key to mimicking olfactory for neuromorphic computing of chemical recognition. Currently, artificial olfactory systems are designed based on chemical sensor arrays. Time‐dependent responses of the sensor arrays are processed by artificial neural networks for recognition. However, the sensors generate instantly volatile responses, and algorithms for the processing of the time‐dependent responses have not been involved. The recognition accuracy and speed are severely impeded. A sensor array can only achieve an accuracy of 90% after at least 5 training epochs. Herein an artificial olfactory chemical‐resistant synapse consisting of 3D hierarchical WO 3 @WO 3 nanofibers are demonstrated. The nanofibers exhibit persistent resistance responses through chemical exposures due to the strong chemisorption of water molecules. Typical synaptic behaviors including paired‐pulse facilitation, long‐term −1 short‐term memory, and learning experience have been achieved. Next, a recurrent neural network that is committed to processing the time‐dependent data is used to identify gas‐phase chemicals of 3‐hydroxy‐2‐butanone, triethylamine, and trimethylamine. Training‐free gas recognition has been realized by a WO 3 @WO 3 nanofiber synapse only, in which the accuracy is above 90% at the first epoch. The results have great potential to satisfy stringent performance requirements on artificial perception systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡上的鸽子粪完成签到,获得积分20
1秒前
Owen应助WBTT采纳,获得10
1秒前
无机盐发布了新的文献求助10
2秒前
慕青应助柒月采纳,获得10
2秒前
段段发布了新的文献求助20
2秒前
2秒前
3秒前
万尧完成签到,获得积分20
3秒前
fantasy完成签到,获得积分10
3秒前
马博的司机完成签到,获得积分10
3秒前
Richard发布了新的文献求助10
3秒前
LWJ完成签到,获得积分10
4秒前
joker发布了新的文献求助10
4秒前
昏睡的小凡完成签到,获得积分20
4秒前
4秒前
2116564完成签到,获得积分10
5秒前
ChemPhys完成签到,获得积分10
5秒前
5秒前
专注流沙发布了新的文献求助10
6秒前
万能图书馆应助Li采纳,获得10
6秒前
BAM完成签到,获得积分20
6秒前
6秒前
yuhan发布了新的文献求助10
6秒前
6秒前
朴素之桃发布了新的文献求助10
7秒前
明明发布了新的文献求助20
7秒前
7秒前
文艺谷蓝完成签到,获得积分10
8秒前
8秒前
小送完成签到,获得积分10
9秒前
9秒前
科研小新在努力完成签到,获得积分10
10秒前
曦月完成签到,获得积分10
10秒前
10秒前
Chenzhs完成签到,获得积分10
10秒前
11秒前
ChemPhys发布了新的文献求助200
12秒前
12秒前
2116564发布了新的文献求助10
12秒前
斯文的碧完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786195
求助须知:如何正确求助?哪些是违规求助? 3331852
关于积分的说明 10252592
捐赠科研通 3047153
什么是DOI,文献DOI怎么找? 1672437
邀请新用户注册赠送积分活动 801287
科研通“疑难数据库(出版商)”最低求助积分说明 760140