Machine learning-assisted screening of metal-organic frameworks (MOFs) for the removal of heavy metals in aqueous solution

水溶液 重金属 金属有机骨架 金属 化学 环境化学 化学工程 有机化学 吸附 工程类
作者
Ling Yuan,Mujian Xu,Yanyang Zhang,Zhihong Gao,Lingxin Zhang,Chen Cheng,Chenghan Ji,Ming Hua,Lu Lv,Weiming Zhang
出处
期刊:Separation and Purification Technology [Elsevier BV]
卷期号:339: 126732-126732 被引量:22
标识
DOI:10.1016/j.seppur.2024.126732
摘要

Developing heavy metal adsorbents with high efficiency is imperative for advanced wastewater treatment. So far, the design of adsorbents has primarily relied on the experimental and molecular simulation methods, which is inefficient and time-consuming due to the vast number of potential materials. This study introduces a machine learning-assisted high-throughput screening strategy to identify optimal metal-organic frameworks (MOFs) for Pb2+ removal in aqueous solution, aiming to guide the design of high-performance MOFs. First, we extracted the structural and chemical properties of MOFs from a database containing 146,205 MOFs and developed a machine learning-guided evaluation method for MOFs. This process led to the selection of 50 high performance MOFs. Considering the effects of water, we further refined our selection to 26 water-stable MOFs by literature data and computational results. Subsequently, top-10 high-performance MOFs were identified, which exhibited high Pb2+ adsorption capacity in aqueous phase. Experimental results using screened MOFs indicated the sequence of Pb2+ adsorption as follows: HKUST-1 (top1) > ZIF-8 (ranked 156) > MOF-808 (ranked 379) > MIL-101(Fe) (ranked 582) > UiO-66 (ranked 862), further validating the effectiveness of our screening strategy. Finally, based on the shared features of the top 10 MOFs, we found that regulation of topology and the coordination of free-standing carboxyl groups in MOFs can strengthen the adsorption for Pb2+. These data-driven findings can offer more rational guidance than experimental approach for the design of novel adsorbents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
搞怪莫茗应助daqing1725采纳,获得30
3秒前
5秒前
6秒前
7秒前
7秒前
NexusExplorer应助vicissitude采纳,获得10
7秒前
Dotuu发布了新的文献求助10
7秒前
7秒前
9秒前
FFFFF发布了新的文献求助10
10秒前
荔枝吖发布了新的文献求助10
10秒前
田鹤飞完成签到,获得积分10
10秒前
14秒前
小马甲应助dream采纳,获得10
14秒前
15秒前
Dotuu完成签到,获得积分10
16秒前
LaineyLee发布了新的文献求助10
17秒前
研友_VZG7GZ应助超级训熊师采纳,获得10
17秒前
18秒前
20秒前
折耳根完成签到 ,获得积分10
20秒前
翎儿响叮当完成签到 ,获得积分10
21秒前
21秒前
所所应助皮崇知采纳,获得10
21秒前
anya完成签到,获得积分10
22秒前
在水一方应助罗永昊采纳,获得10
22秒前
骑骑发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
Owen应助Marita采纳,获得10
23秒前
23秒前
25秒前
雨晴完成签到 ,获得积分10
25秒前
26秒前
WXZ发布了新的文献求助10
26秒前
可靠觅珍应助Una采纳,获得10
30秒前
科研学徒完成签到,获得积分10
30秒前
30秒前
31秒前
赵雪萌发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959198
求助须知:如何正确求助?哪些是违规求助? 3505502
关于积分的说明 11124195
捐赠科研通 3237231
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824