亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tracking children’s handwriting learning process using EEG: A system development and validation

笔迹 复制 流利 计算机科学 心理学 过程(计算) 性格(数学) 语音识别 脑电图 人工智能 神经科学 政治学 数学教育 几何学 数学 法学 操作系统
作者
Elizabeth Ka Yee Loh,Leisi Pei,Yuet Lam,Sze Wan Li,Guang Ouyang
出处
期刊:Learning and Instruction [Elsevier BV]
卷期号:90: 101870-101870 被引量:1
标识
DOI:10.1016/j.learninstruc.2023.101870
摘要

Handwriting is a fundamental component of school education, especially in the early phases. It is thus important to develop a scientific approach to refining the cost-efficiency of handwriting learning in young children. In this study, we proposed that an integration of behavioral and neural data tracking during the real-time process of handwriting learning can reveal the learning process and thus inform the design of handwriting training. The main rationale is that the two complementary information channels can reveal the dynamic learning curve during repetitive practices. Participants were 50 typically developing schoolchildren (aged 6–7) who had limited orthographical knowledge of Chinese characters and handwriting training. Synchronized EEG and handwriting kinematics data were collected when participants were performing a Chinese character copying task. Six unfamiliar Chinese characters at three different complexity levels were selected, and the participants copied each character repetitively for 15 times. The representative behavioral and neural features related to handwriting fluency were quantified, including writing duration, velocity, and event-related potentials (ERPs) extracted from the copying process of each character. By applying linear mixed models (LMMs), we found significant behavioral improvement and neural adaptation effect across the repetitive copying practices; and the observed behavioral and neural effects showed a systematic pattern of dependence on character complexity. These findings validated the cognitive association of the non-invasively collected neural signals, demonstrated the feasibility of combing behavioral and neural signals to track the process of children's handwriting learning, and informed the design of handwriting training programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助明亮不乐采纳,获得10
34秒前
可爱的函函应助cc采纳,获得10
34秒前
34秒前
古今奇观完成签到 ,获得积分10
36秒前
YKX完成签到,获得积分10
38秒前
38秒前
sun完成签到 ,获得积分10
39秒前
42秒前
43秒前
cc发布了新的文献求助10
46秒前
归海大楚发布了新的文献求助10
47秒前
cc完成签到,获得积分10
53秒前
55秒前
yuqinghui98完成签到 ,获得积分10
58秒前
结实烧鹅完成签到,获得积分10
58秒前
领导范儿应助cici采纳,获得10
59秒前
Kiki发布了新的文献求助10
1分钟前
情怀应助zfm采纳,获得10
1分钟前
Hello应助雪白沛春采纳,获得10
1分钟前
希望天下0贩的0应助xin采纳,获得10
1分钟前
小杨要努力完成签到,获得积分10
1分钟前
WK完成签到,获得积分10
1分钟前
1分钟前
Hello应助HE采纳,获得10
1分钟前
CCcZ发布了新的文献求助10
1分钟前
无花果应助4566采纳,获得10
1分钟前
学渣逆袭完成签到,获得积分10
1分钟前
踏实嚣完成签到 ,获得积分10
2分钟前
乐乐应助哈哈采纳,获得10
2分钟前
无花果应助小杨要努力采纳,获得10
2分钟前
2分钟前
2分钟前
4566发布了新的文献求助10
2分钟前
无花果应助CCcZ采纳,获得10
2分钟前
wykion完成签到,获得积分0
2分钟前
周钦完成签到,获得积分10
2分钟前
Hello应助4566采纳,获得10
2分钟前
Unlisted完成签到,获得积分10
2分钟前
3分钟前
学渣逆袭关注了科研通微信公众号
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4813480
求助须知:如何正确求助?哪些是违规求助? 4125572
关于积分的说明 12765859
捐赠科研通 3863016
什么是DOI,文献DOI怎么找? 2126225
邀请新用户注册赠送积分活动 1147682
关于科研通互助平台的介绍 1041788