Dynamic Memristors for Temporal Signal Processing

记忆电阻器 信号处理 信号(编程语言) 计算机科学 数字信号处理 电子工程 工程类 计算机硬件 程序设计语言
作者
Fuming Song,He Shao,Jianyu Ming,Jintao Sun,Wen Li,Mingdong Yi,Linghai Xie,Haifeng Ling
出处
期刊:Advanced materials and technologies [Wiley]
卷期号:9 (16)
标识
DOI:10.1002/admt.202400764
摘要

Abstract The rapid advancement of neuromorphic computing demands innovative hardware solutions capable of efficiently mimicking the functionality of biological neural systems. In this context, dynamic memristors have emerged as promising candidates for realizing neuromorphic reservoir computing (RC) architectures. The dynamic memristors characterized by their ability to exhibit nonlinear conductance variations and transient memory behaviors offer unique advantages for constructing RC systems. Unlike recurrent neural networks (RNNs) that face challenges such as vanishing or exploding gradients during training, RC leverages a fixed‐size reservoir layer that acts as a nonlinear dynamic memory. Researchers can capitalize on their adaptable and efficient characteristics by integrating dynamic memristors into RC systems to enable rapid information processing with low learning costs. This perspective provides an overview of the recent developments in dynamic memristors and their applications in neuromorphic RC. It highlights their potential to revolutionize artificial intelligence hardware by offering faster learning speeds and enhanced energy efficiency. Furthermore, it discusses challenges and opportunities associated with integrating dynamic memristors into RC architectures, paving the way for developing next‐generation cognitive computing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科研通管家采纳,获得10
刚刚
smile发布了新的文献求助10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
xllk应助科研通管家采纳,获得50
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
dandan完成签到 ,获得积分10
1秒前
CipherSage应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
科目三应助科研通管家采纳,获得10
2秒前
2秒前
无花果应助欢喜的荔枝采纳,获得10
3秒前
田様应助粗暴的君浩采纳,获得30
3秒前
李健应助samvega采纳,获得10
4秒前
空空如也完成签到,获得积分20
4秒前
叶落花开完成签到,获得积分10
4秒前
易寒完成签到,获得积分10
5秒前
yuan发布了新的文献求助10
5秒前
5秒前
科研通AI5应助903869831@qq.com采纳,获得10
5秒前
六月残雪发布了新的文献求助10
6秒前
椋鸟应助zz采纳,获得10
7秒前
7秒前
科研人发布了新的文献求助10
8秒前
8秒前
yummy完成签到,获得积分10
8秒前
9秒前
polaris发布了新的文献求助10
9秒前
代何完成签到,获得积分10
10秒前
ccc完成签到 ,获得积分10
10秒前
Sakura完成签到 ,获得积分10
10秒前
10秒前
欣欣完成签到,获得积分10
11秒前
11秒前
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804916
求助须知:如何正确求助?哪些是违规求助? 3350009
关于积分的说明 10346893
捐赠科研通 3065849
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808862
科研通“疑难数据库(出版商)”最低求助积分说明 765093