Development and validation of a machine learning‐based approach to identify high‐risk diabetic cardiomyopathy phenotype

医学 队列 内科学 心脏病学 心肌病 糖尿病 糖尿病性心肌病 心力衰竭 内分泌学
作者
Matthew W. Segar,Muhammad Usman,Kershaw V. Patel,Muhammad Shahzeb Khan,Javed Butler,Lakshman Manjunath,Carolyn S.P. Lam,Subodh Verma,DuWayne L. Willett,David Kao,James L. Januzzi,Ambarish Pandey
出处
期刊:European Journal of Heart Failure [Elsevier BV]
被引量:1
标识
DOI:10.1002/ejhf.3443
摘要

Aims Abnormalities in specific echocardiographic parameters and cardiac biomarkers have been reported among individuals with diabetes. However, a comprehensive characterization of diabetic cardiomyopathy (DbCM), a subclinical stage of myocardial abnormalities that precede the development of clinical heart failure (HF), is lacking. In this study, we developed and validated a machine learning‐based clustering approach to identify the high‐risk DbCM phenotype based on echocardiographic and cardiac biomarker parameters. Methods and results Among individuals with diabetes from the Atherosclerosis Risk in Communities (ARIC) cohort who were free of cardiovascular disease and other potential aetiologies of cardiomyopathy (training, n = 1199), unsupervised hierarchical clustering was performed using echocardiographic parameters and cardiac biomarkers of neurohormonal stress and chronic myocardial injury (total 25 variables). The high‐risk DbCM phenotype was identified based on the incidence of HF on follow‐up. A deep neural network (DeepNN) classifier was developed to predict DbCM in the ARIC training cohort and validated in an external community‐based cohort (Cardiovascular Health Study [CHS]; n = 802) and an electronic health record (EHR) cohort ( n = 5071). Clustering identified three phenogroups in the derivation cohort. Phenogroup‐3 ( n = 324, 27% of the cohort) had significantly higher 5‐year HF incidence than other phenogroups (12.1% vs. 4.6% [phenogroup 2] vs. 3.1% [phenogroup 1]) and was identified as the high‐risk DbCM phenotype. The key echocardiographic predictors of high‐risk DbCM phenotype were higher NT‐proBNP levels, increased left ventricular mass and left atrial size, and worse diastolic function. In the CHS and University of Texas (UT) Southwestern EHR validation cohorts, the DeepNN classifier identified 16% and 29% of participants with DbCM, respectively. Participants with (vs. without) high‐risk DbCM phenotype in the external validation cohorts had a significantly higher incidence of HF (hazard ratio [95% confidence interval] 1.61 [1.18–2.19] in CHS and 1.34 [1.08–1.65] in the UT Southwestern EHR cohort). Conclusion Machine learning‐based techniques may identify 16% to 29% of individuals with diabetes as having a high‐risk DbCM phenotype who may benefit from more aggressive implementation of HF preventive strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助饭小团采纳,获得10
刚刚
LLL完成签到 ,获得积分10
1秒前
念辞完成签到,获得积分10
1秒前
科研通AI5应助感念采纳,获得10
2秒前
科研通AI5应助木子木采纳,获得10
2秒前
科研通AI5应助张继妖采纳,获得10
7秒前
科研通AI5应助Ytgl采纳,获得10
12秒前
12秒前
15秒前
嘉禾望岗完成签到,获得积分20
16秒前
glacier发布了新的文献求助10
18秒前
感念发布了新的文献求助10
19秒前
24秒前
27秒前
Ying发布了新的文献求助10
28秒前
科研通AI5应助小猫多鱼采纳,获得10
30秒前
木子木发布了新的文献求助10
31秒前
田様应助阿浮采纳,获得10
33秒前
36秒前
37秒前
39秒前
张继妖发布了新的文献求助10
42秒前
乐乐应助毛毛采纳,获得10
44秒前
cc发布了新的文献求助70
44秒前
Koi关闭了Koi文献求助
44秒前
文艺水风发布了新的文献求助10
44秒前
niceweiwei发布了新的文献求助10
44秒前
lzc完成签到,获得积分10
45秒前
乐乐应助黑米粥采纳,获得10
46秒前
乐乐应助黑米粥采纳,获得10
46秒前
今天只做一件事应助黑米粥采纳,获得150
46秒前
乐乐应助黑米粥采纳,获得10
46秒前
Rye227应助黑米粥采纳,获得10
46秒前
CyrusSo524应助黑米粥采纳,获得200
46秒前
47秒前
在封我就急眼啦完成签到,获得积分10
49秒前
阳和启蛰完成签到 ,获得积分10
50秒前
禾火完成签到 ,获得积分10
51秒前
hahaha发布了新的文献求助10
51秒前
重要的哈密瓜完成签到 ,获得积分10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648