Animating arousal and engagement: empirical insights into AI-enhanced robotic performances and consumer reactions

唤醒 心理学 计算机科学 认知心理学 社会心理学
作者
Yuhao Li,Shurui Wang,Zehua Li
出处
期刊:Journal of Hospitality and Tourism Technology [Emerald (MCB UP)]
卷期号:15 (5): 737-768 被引量:6
标识
DOI:10.1108/jhtt-01-2024-0053
摘要

Purpose This study aims to apply the predictive processing theory to examine the influence of artificial intelligence (AI)-driven robotic performers on audience emotions and the audience’s resulting electronic word-of-mouth (eWOM) behaviors during tourism service encounters. Design/methodology/approach Using a quantitative research methodology, survey responses from 339 regular customers of performing arts in tourism destinations were analyzed. The respondents were recruited through Prolific, a professional data collection platform. SPSS 23.0 was used for the preliminary analysis, from which a research model to achieve the aim was proposed. SmartPLS 3 was used for partial least squares structural equation modeling to test the model. Findings Interactive and novel robotic performances significantly encouraged the consumers to share their experiences online, thereby enhancing eWOM. However, melodic resonance had no significant impact on eWOM intentions. The consumers’ emotional responses fully mediated the relationship of the novelty and interactivity of the performances to the consumers’ eWOM intentions but did not mediate the relationship of the musical elements to their eWOM intentions. Originality/value This study enriches the understanding of how AI-driven performances impact consumers’ emotional engagement and sharing behaviors. It extends the application of the predictive processing theory to the domain of consumer behavior, offering valuable insights for enhancing audience engagement in performances through technological innovation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左丘以云完成签到,获得积分10
3秒前
背后的语海完成签到 ,获得积分10
3秒前
CodeCraft应助张二田采纳,获得10
5秒前
Xiao完成签到,获得积分20
6秒前
benzene完成签到 ,获得积分10
11秒前
12秒前
李健的小迷弟应助vicky采纳,获得10
12秒前
李健应助重要海雪采纳,获得10
18秒前
21秒前
tracer526发布了新的文献求助10
26秒前
wzppp发布了新的文献求助10
28秒前
Verity应助芊芊墨采纳,获得10
29秒前
asdf完成签到 ,获得积分10
29秒前
30秒前
XY应助科研通管家采纳,获得30
31秒前
Verity应助科研通管家采纳,获得10
31秒前
31秒前
浮游应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
orixero应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
NexusExplorer应助科研通管家采纳,获得10
31秒前
今后应助科研通管家采纳,获得10
31秒前
Zewen_Li应助科研通管家采纳,获得10
31秒前
JamesPei应助科研通管家采纳,获得10
31秒前
共享精神应助科研通管家采纳,获得10
31秒前
星辰大海应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
蓝天应助科研通管家采纳,获得10
31秒前
梦将军应助科研通管家采纳,获得10
31秒前
思源应助暖部采纳,获得10
34秒前
Estrella发布了新的文献求助10
34秒前
36秒前
Verity应助tracer526采纳,获得10
38秒前
落雪完成签到,获得积分10
40秒前
段非非完成签到,获得积分10
40秒前
松鼠鳜鱼完成签到,获得积分10
44秒前
doctorshg完成签到,获得积分10
46秒前
落雪发布了新的文献求助10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560419
求助须知:如何正确求助?哪些是违规求助? 4645567
关于积分的说明 14675591
捐赠科研通 4586746
什么是DOI,文献DOI怎么找? 2516526
邀请新用户注册赠送积分活动 1490130
关于科研通互助平台的介绍 1460963