Gestational diabetes mellitus: Impacts on fetal neurodevelopment, gut dysbiosis, and the promise of precision medicine

妊娠期糖尿病 组学 微生物群 失调 代谢组学 怀孕 生物信息学 系统生物学 糖尿病 生物 医学 计算生物学 内分泌学 妊娠期 遗传学
作者
Michelle Biete,Sona Vasudevan
出处
期刊:Frontiers in Molecular Biosciences [Frontiers Media]
卷期号:11 被引量:2
标识
DOI:10.3389/fmolb.2024.1420664
摘要

Gestational diabetes mellitus (GDM) is a common metabolic disorder affecting approximately 16.5% of pregnancies worldwide and causing significant health concerns. GDM is a serious pregnancy complication caused by chronic insulin resistance in the mother and has been associated with the development of neurodevelopmental disorders in offspring. Emerging data support the notion that GDM affects both the maternal and fetal microbiome, altering the composition and function of the gut microbiota, resulting in dysbiosis. The observed dysregulation of microbial presence in GDM pregnancies has been connected to fetal neurodevelopmental problems. Several reviews have focused on the intricate development of maternal dysbiosis affecting the fetal microbiome. Omics data have been instrumental in deciphering the underlying relationship among GDM, gut dysbiosis, and fetal neurodevelopment, paving the way for precision medicine. Microbiome-associated omics analyses help elucidate how dysbiosis contributes to metabolic disturbances and inflammation, linking microbial changes to adverse pregnancy outcomes such as those seen in GDM. Integrating omics data across these different layers—genomics, transcriptomics, proteomics, metabolomics, and microbiomics—offers a comprehensive view of the molecular landscape underlying GDM. This review outlines the affected pathways and proposes future developments and possible personalized therapeutic interventions by integrating omics data on the maternal microbiome, genetics, lifestyle factors, and other relevant biomarkers aimed at identifying women at high risk of developing GDM. For example, machine learning tools have emerged with powerful capabilities to extract meaningful insights from large datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
致行完成签到,获得积分20
1秒前
无语发布了新的文献求助10
2秒前
上官若男应助KK采纳,获得10
3秒前
一只狗东西完成签到 ,获得积分10
4秒前
冰魂应助金木木采纳,获得20
7秒前
徐rl完成签到 ,获得积分10
7秒前
薛薛完成签到,获得积分10
11秒前
papa应助Rain采纳,获得30
11秒前
文武完成签到 ,获得积分0
11秒前
Z赵完成签到 ,获得积分10
15秒前
Zzzzccc完成签到,获得积分10
16秒前
zhy完成签到,获得积分10
18秒前
久旱逢甘霖完成签到 ,获得积分10
19秒前
20秒前
23秒前
烂漫的蜡烛完成签到 ,获得积分10
23秒前
火星上白羊完成签到,获得积分10
23秒前
斯文败类应助yuutto采纳,获得10
24秒前
24秒前
我是老大应助谢富杰采纳,获得10
25秒前
八段锦完成签到,获得积分10
26秒前
28秒前
乌龟gogogo完成签到 ,获得积分10
30秒前
1111应助八段锦采纳,获得10
31秒前
31秒前
沐沐心完成签到 ,获得积分10
32秒前
小雨点完成签到,获得积分10
32秒前
奔奔完成签到 ,获得积分10
34秒前
标致绮露完成签到,获得积分10
34秒前
duolaAmeng完成签到,获得积分10
34秒前
科研通AI5应助Yong采纳,获得10
35秒前
37秒前
张秋雨发布了新的文献求助10
39秒前
ZZWSWJ发布了新的文献求助10
40秒前
圆圆完成签到,获得积分20
41秒前
科研通AI5应助somebodyzou采纳,获得30
44秒前
立冏商完成签到,获得积分10
45秒前
47秒前
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323349
关于积分的说明 10213997
捐赠科研通 3038590
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290