A machine‐learning model of academic resilience in the times of the COVID‐19 pandemic: Evidence drawn from 79 countries/economies in the PISA 2022 mathematics study

大流行 2019年冠状病毒病(COVID-19) 弹性(材料科学) 2019-20冠状病毒爆发 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 数学教育 心理学 心理弹性 病毒学 社会心理学 医学 物理 疾病 爆发 传染病(医学专业) 热力学 病理
作者
Kwok‐cheung Cheung,Pou‐seong Sit,Jia‐qi Zheng,Chi‐chio Lam,Soi‐kei Mak,Man‐kai Ieong
出处
期刊:British Journal of Educational Psychology [Wiley]
卷期号:94 (4): 1224-1244 被引量:1
标识
DOI:10.1111/bjep.12715
摘要

Abstract Background Given that students from socio‐economically disadvantaged family backgrounds are more likely to suffer from low academic performance, there is an interest in identifying features of academic resilience, which may mitigate the relationship between disadvantaged socio‐economic status and academic performance. Aims This study sought to combine machine learning and explainable artificial intelligence (XAI) technique to identify key features of academic resilience in mathematics learning during COVID‐19. Materials and Methods Based on PISA 2022 data in 79 countries/economies, the random forest model coupled with Shapley additive explanations (SHAP) value technique not only uncovered the key features of academic resilience but also examined the contributions of each key feature. Results Findings indicated that 35 features were identified in the classification of academically resilient and non‐academically resilient students, which largely validated the previous academic resilient framework. Notably, gender differences were shown in the distribution of some key features. Research findings also indicated that resilient students tended to have a stable emotional state, high levels of self‐efficacy, low levels of truancy and positive future aspirations. Discussion This study has established a research paradigm essentially methodological in nature to bridge the gap between psychological theories and big data in the field of educational psychology. Conclusion To sum up, our study shed light on the issues of education equity and quality from a global perspective in the times of the COVID‐19 pandemic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
water应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
孙燕应助科研通管家采纳,获得10
刚刚
冰魂应助科研通管家采纳,获得20
刚刚
CodeCraft应助yimuyixiu采纳,获得10
刚刚
孙燕应助科研通管家采纳,获得10
刚刚
刚刚
无花果应助唐心采纳,获得10
刚刚
倒背如流圆周率完成签到,获得积分10
2秒前
悟小空完成签到,获得积分10
3秒前
清新的寄风完成签到 ,获得积分10
4秒前
4秒前
fujun完成签到,获得积分10
4秒前
6秒前
执着乐双完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
乐观的访风完成签到,获得积分10
8秒前
10秒前
叶子完成签到,获得积分10
11秒前
乔乔汀完成签到 ,获得积分10
11秒前
布谷完成签到,获得积分10
12秒前
Ogai完成签到,获得积分10
12秒前
lilac完成签到,获得积分10
13秒前
叶子发布了新的文献求助10
13秒前
CodeCraft应助来自DF的小白采纳,获得10
13秒前
田様应助拂晓采纳,获得10
13秒前
14秒前
15秒前
华华完成签到,获得积分10
16秒前
19秒前
20秒前
virgil发布了新的文献求助30
21秒前
Brian发布了新的文献求助10
23秒前
24秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
ZHAO完成签到,获得积分10
26秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3876383
求助须知:如何正确求助?哪些是违规求助? 3418962
关于积分的说明 10711152
捐赠科研通 3143541
什么是DOI,文献DOI怎么找? 1734433
邀请新用户注册赠送积分活动 836806
科研通“疑难数据库(出版商)”最低求助积分说明 782823