MRI deep learning models for assisted diagnosis of knee pathologies: a systematic review

医学 卷积神经网络 异常 磁共振成像 神经组阅片室 系统回顾 人工智能 深度学习 机器学习 放射科 梅德林 计算机科学 神经学 精神科 政治学 法学
作者
K. W. Mead,Tom Cross,Greg Roger,Rohan Sabharwal,Sanjeev Kumar Singh,Nicola Giannotti
出处
期刊:European Radiology [Springer Science+Business Media]
被引量:2
标识
DOI:10.1007/s00330-024-11105-8
摘要

Abstract Objectives Despite showing encouraging outcomes, the precision of deep learning (DL) models using different convolutional neural networks (CNNs) for diagnosis remains under investigation. This systematic review aims to summarise the status of DL MRI models developed for assisting the diagnosis of a variety of knee abnormalities. Materials and methods Five databases were systematically searched, employing predefined terms such as ‘Knee AND 3D AND MRI AND DL’. Selected inclusion criteria were used to screen publications by title, abstract, and full text. The synthesis of results was performed by two independent reviewers. Results Fifty-four articles were included. The studies focused on anterior cruciate ligament injuries ( n = 19, 36%), osteoarthritis ( n = 9, 17%), meniscal injuries ( n = 13, 24%), abnormal knee appearance ( n = 11, 20%), and other ( n = 2, 4%). The DL models in this review primarily used the following CNNs: ResNet ( n = 11, 21%), VGG ( n = 6, 11%), DenseNet ( n = 4, 8%), and DarkNet ( n = 3, 6%). DL models showed high-performance metrics compared to ground truth. DL models for the detection of a specific injury outperformed those by up to 4.5% for general abnormality detection. Conclusion Despite the varied study designs used among the reviewed articles, DL models showed promising outcomes in the assisted detection of selected knee pathologies by MRI. This review underscores the importance of validating these models with larger MRI datasets to close the existing gap between current DL model performance and clinical requirements. Key Points Question What is the status of DL model availability for knee pathology detection in MRI and their clinical potential ? Findings Pathology-specific DL models reported higher accuracy compared to DL models for the detection of general abnormalities of the knee. DL model performance was mainly influenced by the quantity and diversity of data available for model training . Clinical relevance These findings should encourage future developments to improve patient care, support personalised diagnosis and treatment, optimise costs, and advance artificial intelligence-based medical imaging practices . Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
jing发布了新的文献求助10
1秒前
HOHO发布了新的文献求助10
1秒前
科研通AI5应助能干宛秋采纳,获得10
1秒前
1秒前
1秒前
2秒前
庸尘完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
cdercder应助至秦采纳,获得10
3秒前
不潮不用花钱完成签到,获得积分10
3秒前
天天快乐应助chrislignin采纳,获得10
3秒前
科研通AI5应助wangx采纳,获得10
3秒前
4秒前
4秒前
超锅完成签到,获得积分20
4秒前
111完成签到 ,获得积分10
4秒前
ardejiang发布了新的文献求助10
4秒前
4秒前
4秒前
Altria发布了新的文献求助10
4秒前
CC发布了新的文献求助10
5秒前
wangzai完成签到,获得积分10
5秒前
等风来完成签到,获得积分10
6秒前
孙琪发布了新的文献求助10
6秒前
所所应助nana采纳,获得10
6秒前
香蕉觅云应助汎影采纳,获得10
6秒前
狗蛋发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
动漫大师发布了新的文献求助10
7秒前
chaofan完成签到 ,获得积分10
8秒前
LHW完成签到 ,获得积分10
8秒前
等风来发布了新的文献求助10
8秒前
宁小满完成签到,获得积分10
8秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785258
求助须知:如何正确求助?哪些是违规求助? 3330815
关于积分的说明 10248481
捐赠科研通 3046259
什么是DOI,文献DOI怎么找? 1671915
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868