离散时间和连续时间
数学
控制理论(社会学)
线性二次调节器
线性系统
二次方程
跳跃
线性调节器
应用数学
调节器
数学优化
计算机科学
最优控制
数学分析
统计
控制(管理)
物理
人工智能
生物化学
几何学
化学
量子力学
基因
作者
Yichun Li,Wei Xing Zheng,Zheng‐Guang Wu,Yang Tang,Shuping Ma
标识
DOI:10.1109/tcyb.2024.3454530
摘要
The robust LQ optimal regulator problem for discrete-time uncertain singular Markov jump systems (SMJSs) is solved by introducing a new quadratic cost function established by the penalty function method, which combines the penalty function and the weighting matrices. First, the indefinite robust optimal regulator problem for uncertain SMJSs is transformed into the robust optimal regulator problem with positive definite weighting matrices for uncertain Markov jump systems (MJSs). The transformed robust LQ problem is settled by the robust least-squares method, and the condition of the existence and analytic form of the robust optimal regulator are proposed. On the infinite horizon, the optimal state feedback is obtained, which can guarantee the regularity, causality, and stochastic stability of the corresponding optimal closed-loop system and eliminate the uncertain parameters of the closed-loop system. A numerical example and a practical example of DC motor are used to verify the validity of the conclusions.
科研通智能强力驱动
Strongly Powered by AbleSci AI