Genetic analyses of 104 phenotypes in 20,900 Chinese pregnant women reveal pregnancy-specific discoveries

怀孕 表型 产科 生物 进化生物学 医学 遗传学 基因
作者
Xiao Han,Linxuan Li,Meng Yang,Xinyi Zhang,Jieqiong Zhou,Jingyu Zeng,Yan Zhou,Xianmei Lan,Jiuying Liu,Ying Lin,Yuanyuan Zhong,Xiaoqian Zhang,Lin Wang,Zhongqiang Cao,Panhong Liu,Hong Mei,Mingzhi Cai,Xiaonan Cai,Ye Tao,Yunqing Zhu
出处
期刊:Cell genomics [Elsevier]
卷期号:4 (10): 100633-100633 被引量:5
标识
DOI:10.1016/j.xgen.2024.100633
摘要

Monitoring biochemical phenotypes during pregnancy is vital for maternal and fetal health, allowing early detection and management of pregnancy-related conditions to ensure safety for both. Here, we conducted a genetic analysis of 104 pregnancy phenotypes in 20,900 Chinese women. The genome-wide association study (GWAS) identified a total of 410 trait-locus associations, with 71.71% reported previously. Among the 116 novel hits for 45 phenotypes, 83 were successfully replicated. Among them, 31 were defined as potentially pregnancy-specific associations, including creatine and HELLPAR and neutrophils and ESR1, with subsequent analysis revealing enrichments in estrogen-related pathways and female reproductive tissues. The partitioning heritability underscored the significant roles of fetal blood, embryoid bodies, and female reproductive organs in pregnancy hematology and birth outcomes. Pathway analysis confirmed the intricate interplay of hormone and immune regulation, metabolism, and cell cycle during pregnancy. This study contributes to the understanding of genetic influences on pregnancy phenotypes and their implications for maternal health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
甜蜜乐松发布了新的文献求助10
1秒前
初若发布了新的文献求助10
1秒前
nan发布了新的文献求助30
2秒前
云淡风轻发布了新的文献求助10
2秒前
fqf发布了新的文献求助10
3秒前
3秒前
4秒前
Ava应助ln1111采纳,获得10
4秒前
传奇3应助哈哈镜采纳,获得10
5秒前
柠檬加冰发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
8秒前
8秒前
沐晨浠完成签到,获得积分10
8秒前
adbak发布了新的文献求助10
8秒前
雪白发卡发布了新的文献求助10
8秒前
喜东东完成签到,获得积分10
9秒前
10秒前
king完成签到,获得积分10
10秒前
云淡风轻完成签到,获得积分10
11秒前
12秒前
12秒前
GLZ6984完成签到,获得积分10
12秒前
12秒前
土豆完成签到,获得积分10
12秒前
wwxd发布了新的文献求助10
12秒前
13秒前
13秒前
golden完成签到,获得积分10
14秒前
14秒前
李健的粉丝团团长应助安w采纳,获得50
15秒前
15发布了新的文献求助10
15秒前
哈哈镜发布了新的文献求助10
15秒前
16秒前
SCI66完成签到,获得积分10
16秒前
维尼发布了新的文献求助10
17秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Introduction to Linear Optimization, by Dimitris Bertsimas and John N. Tsitsiklis 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828537
求助须知:如何正确求助?哪些是违规求助? 3370859
关于积分的说明 10465401
捐赠科研通 3090856
什么是DOI,文献DOI怎么找? 1700562
邀请新用户注册赠送积分活动 817893
科研通“疑难数据库(出版商)”最低求助积分说明 770588