Load Prediction of Regional Heat Exchange Station Based on Fuzzy Clustering Based on Fourier Distance and Convolutional Neural Network–Bidirectional Long Short-Term Memory Network

期限(时间) 计算机科学 卷积神经网络 聚类分析 模糊逻辑 短时记忆 人工神经网络 短时记忆 人工智能 模糊聚类 数据挖掘 循环神经网络 认知 工作记忆 心理学 神经科学 量子力学 物理
作者
Yuwen You,Zhonghua Wang,Zhihao Liu,Chunmei Guo,Bin Yang
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:17 (16): 4190-4190 被引量:1
标识
DOI:10.3390/en17164190
摘要

Cogeneration is an important means for heat supply enterprises to obtain heat, and accurate load prediction is particularly crucial. The heat load of a centralized heat supply system is influenced by various factors such as outdoor meteorological parameters, the building envelope structure, and regulation control, which exhibit a strong coupling and nonlinearity. It is essential to identify the key variables affecting the heat load at different heating stages through data mining techniques and to use deep learning algorithms to precisely regulate the heating system based on load predictions. In this study, a heat station in a northern Chinese city is taken as the subject of research. We apply the Fuzzy Clustering based on Fourier distance (FCBD-FCM) algorithm to transform the factors influencing the long and short-term load prediction of heat supply from the time domain to the frequency domain. This transformation is used to analyze the degree of their impact on load changes and to extract factors with significant influence as the multifeatured input variables for the prediction model. Five neural network models for load prediction are established, namely, Backpropagation (BP), convolutional neural network (CNN), Long Short-Term Memory (LSTM), CNN-LSTM, and CNN-BiLSTM. These models are compared and analyzed for their performance in long-term, short-term, and ultrashort-term heating load prediction. The findings indicate that the load prediction accuracy is high when multifeatured input variables are based on fuzzy clustering. Furthermore, the CNN-BiLSTM model notably enhances the prediction accuracy and generalization ability compared to other models, with the Mean Absolute Percentage Error (MAPE) averaging within 3%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
洋气天天发布了新的文献求助10
1秒前
不想干活完成签到,获得积分0
3秒前
鲑鱼完成签到 ,获得积分10
4秒前
linkman应助无情冷珍采纳,获得10
9秒前
10秒前
wawaaaah完成签到 ,获得积分10
13秒前
15秒前
17秒前
17秒前
lql完成签到,获得积分10
18秒前
20秒前
丘比特应助Dejavue采纳,获得10
21秒前
高震博完成签到 ,获得积分10
22秒前
邱志鸿完成签到,获得积分10
23秒前
23秒前
Akim应助左函采纳,获得10
25秒前
香蕉班完成签到,获得积分10
26秒前
王某发布了新的文献求助10
27秒前
无月即明发布了新的文献求助10
28秒前
okbasf完成签到,获得积分10
29秒前
万能图书馆应助Os采纳,获得10
30秒前
33秒前
33秒前
科研通AI6应助1111采纳,获得10
35秒前
35秒前
35秒前
36秒前
36秒前
37秒前
37秒前
贝林7完成签到,获得积分10
38秒前
39秒前
39秒前
39秒前
tranphucthinh发布了新的文献求助10
40秒前
pywangsmmu92完成签到,获得积分10
44秒前
Os发布了新的文献求助10
45秒前
47秒前
科研通AI5应助萧衍采纳,获得10
48秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Tonal intuitions in "Tristan und Isolde" / by Brian Hyer 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4333820
求助须知:如何正确求助?哪些是违规求助? 3845353
关于积分的说明 12011300
捐赠科研通 3485906
什么是DOI,文献DOI怎么找? 1913458
邀请新用户注册赠送积分活动 956641
科研通“疑难数据库(出版商)”最低求助积分说明 857306