The fibroblast growth factor (FGF) family and the FGF receptors are ubiquitously expressed and regulate a plethora of cell signaling cascades during development, tissue and cell homeostasis, and metabolism. Dysregulated FGF signaling is associated with cancer and several genetic and metabolic disorders. As FGF signaling regulates all the key metabolic processes to maintain whole‐body homeostasis, there is an increasing focus on engineering FGFs as potential treatments for dysregulated metabolism. Within cancer, reprogramming of energy metabolism is a crucial step leading to tumorigenesis, metastasis formation, and resistance to therapy. FGF signaling dysregulation in cancer enables uncontrolled proliferation and survival and promotes therapy resistance and metastasis. However, the role of FGF signaling within cancer metabolism is not well understood. A better understanding of how FGF signaling affects the rewiring of cancer metabolism as well as tumorigenesis would provide novel avenues for discovering potential drug targets and biomarkers. Here, we discuss the role of paracrine, endocrine, and intracellular FGFs within metabolism as well as the current understanding of how FGF signaling contributes to rewired cancer metabolism.