Evaluating seismic landslide risks using AI models: TCN, GRU and random forest techniques – a case study

作者
Yiheng Wang,Moustafa Moufid Kassem,Fadzli Mohamed Nazri
出处
期刊:World Journal of Engineering [Emerald Publishing Limited]
卷期号:: 1-19
标识
DOI:10.1108/wje-03-2025-0172
摘要

Purpose This study aims to analyze and compare the efficacy of three sophisticated artificial intelligence (AI) models – temporal convolutional network (TCN), gated recurrent unit (GRU) and random forest (RF) – in evaluating seismic landslide risk in Sichuan Province, China, an area particularly susceptible to earthquake-triggered landslides. This study aims to determine the most efficient AI methodology for precise risk prediction and to produce actionable insights for mitigating landslide dangers. Design/methodology/approach This research uses a seismic landslide inventory together with influencing elements, such as geological, topographical and seismic parameters, to train and validate the AI models. The Gini index (GI) of the RF model classified landslide risk factors according to their importance. Performance was assessed with criteria such as accuracy (ACC), recall and area under the curve (AUC). A GIS-based risk distribution map has been developed to display and assess regional vulnerability. Findings The findings reveal that all three AI models – TCN, GRU and RF – exhibited exceptional performance in seismic landslide risk assessment, with ACC and AUC values exceeding 0.75 and 0.80, respectively. The TCN model demonstrated the highest accuracy (ACC = 0.781) and robustness (AUC = 0.851), positioning it as the optimal choice for seismic landslide prediction. The RF model additionally enabled the categorization of landslide risk variables based on variations in the GI. These findings were validated using five-fold cross-validation for RF and repeated randomized validation trials for TCN and GRU. All validation frameworks maintained the model performance hierarchy (TCN > GRU > RF), with statistical testing confirming TCN’s higher ACC and AUC. The GIS-based seismic landslide risk map for Sichuan Province provides critical information for local authorities and planners, improving disaster preparedness and landslide mitigation strategies. Originality/value This study compares advanced AI techniques (TCN, GRU, RF) in seismic landslide risk assessment in Sichuan Province’s hazardous landscape. The TCN model outperforms others, enhancing AI-based disaster prediction. The GI classification and GIS-based landslide risk map provide practical tools for disaster mitigation and planning, reducing earthquake-induced hazards in high-risk regions. This study introduces the novel application of TCN for modeling earthquake-induced landslides, leveraging its strength in capturing temporal dependencies from seismic triggers. By combining this capability with rigorous statistical validation – including cross-validation, confidence intervals and paired t-tests – the study establishes a reliable and generalizable framework for AI-based EQIL assessment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
4秒前
高大含灵发布了新的文献求助10
5秒前
gkads应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
OU应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
解安珊发布了新的文献求助10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
CyndiaSUN完成签到,获得积分10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
OU应助科研通管家采纳,获得10
6秒前
6秒前
满意硬币应助科研通管家采纳,获得100
7秒前
香蕉觅云应助牛马鹅采纳,获得10
7秒前
7秒前
舒萼发布了新的文献求助10
7秒前
8秒前
8秒前
景阳完成签到,获得积分10
10秒前
Akiba完成签到,获得积分10
10秒前
10秒前
研友_ZrBNxZ完成签到,获得积分10
11秒前
11秒前
11秒前
After发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300615
求助须知:如何正确求助?哪些是违规求助? 4448440
关于积分的说明 13845918
捐赠科研通 4334192
什么是DOI,文献DOI怎么找? 2379428
邀请新用户注册赠送积分活动 1374534
关于科研通互助平台的介绍 1340164