Eliminating Social Popularity Bias in Recommendation: Causal Inference-Based Social Graph Neural Networks

人气 计算机科学 推论 因果推理 人工智能 图形 机器学习 人工神经网络 理论计算机科学 数据科学 计量经济学 心理学 数学 社会心理学
作者
Huilin Xu,Ruina Yang,Ruibin Geng
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2024.0682
摘要

In the era of information overload, social recommender systems, which leverage the emergence of online social networks to perform personalized content filtering based on user preferences, have proven successful. However, social recommender models not only exhibit a well-known bias toward popular items but also have a social popularity bias that is often overlooked in existing research. Both biases can lead the model to learn inaccurate user representations, ultimately compromising the diversity and accuracy of recommendations. This paper focuses on integrating social networks into recommendations in an unbiased way. First, a new causal graph is proposed to understand how item and social popularity affect user representation and how user consistency preferences affect ranking scores. Next, to eliminate the adverse effects of popularity bias, we explore how to leverage backdoor adjustments to learn unbiased user representations and obtain accurate ranking scores through a counterfactual reasoning strategy. Finally, using the backdoor adjustment operator and the counterfactual reasoning strategy as key components, a causal inference-based social graph neural network is proposed. Evaluation results on four real-world data sets show that our proposed model surpasses state-of-the-art methods in recommendation accuracy and diversity. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72271195 and 72472128]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0682 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0682 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕黑蜜蜂发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
端庄冬日完成签到,获得积分10
1秒前
1秒前
1秒前
笨笨火龙果完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
scinewbee发布了新的文献求助10
3秒前
栖栖发布了新的文献求助10
3秒前
阿基米德发布了新的文献求助10
4秒前
5秒前
pure完成签到 ,获得积分10
5秒前
ranran完成签到,获得积分10
6秒前
英吉利25发布了新的文献求助10
6秒前
端庄冬日发布了新的文献求助10
7秒前
科研通AI6.1应助简单项链采纳,获得10
9秒前
9秒前
无花果应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
今后应助SOESAN采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786859
求助须知:如何正确求助?哪些是违规求助? 5696278
关于积分的说明 15470826
捐赠科研通 4915556
什么是DOI,文献DOI怎么找? 2645833
邀请新用户注册赠送积分活动 1593523
关于科研通互助平台的介绍 1547863