清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Global Digital Terrain Models: Evaluation of vertical accuracy against different morphological contexts

作者
Mohamed M. Helmy,Emanuele Mandanici,Gabriele Bitelli
出处
期刊:Progress in Physical Geography [SAGE]
标识
DOI:10.1177/03091333251406853
摘要

Digital Terrain Models (DTMs) are essential representations of Earth’s surface, widely used in topographic mapping, hydrological modeling, engineering, and hazard assessment. Advances in satellite imagery, LiDAR, and interpolation techniques have significantly improved DTM generation. This study evaluates the vertical accuracy of four global, freely available DEMs, SRTM 30, ALOS World 3D, Copernicus 30, as DSMs and FABDEM as a DTM, against high-resolution LiDAR-derived reference data across three diverse case study areas in Italy: urban, mountainous, and flat terrains. The assessment framework combined pixel-wise error statistics with zonal analysis using the 2023 ESRI Land Cover dataset. Results highlight that terrain morphology and land cover significantly affect DTM accuracy. Copernicus 30 and FABDEM outperformed the others overall, showing low mean elevation errors and consistent performance across landscape types. Copernicus 30 achieved high accuracy in urban areas (mean difference: 0.48 m), while FABDEM performed well in vegetated and mixed terrains (1.48 m and −0.87 m in Trentino-Alto Adige and Valle d’Aosta, respectively), benefiting from vegetation and building artifact removal. ALOS World 3D showed the poorest performance, with high errors in forested and urban areas, failing to meet its nominal vertical accuracy threshold (<5 m). SRTM 30, while less accurate than Copernicus 30 or FABDEM, remained within its expected accuracy (<16 m) and performed reliably in simpler terrains. Error distribution analysis confirmed these trends: Copernicus 30 showed tightly clustered, low-bias errors; FABDEM had broader but centered distributions; ALOS World 3D exhibited wide skewed errors. Zonal statistics further showed that dense vegetation and urban features caused the largest discrepancies, while bare ground yielded the highest accuracy. Overall, Copernicus 30 is recommended for urban applications, FABDEM for vegetated and mixed-use landscapes, and SRTM 30 for general terrain. ALOS World 3D is currently unsuitable for applications that require high vertical accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
guoxihan完成签到,获得积分10
5秒前
清澈的爱只为中国完成签到 ,获得积分10
7秒前
NSJN2022发布了新的文献求助10
8秒前
共享精神应助NSJN2022采纳,获得10
12秒前
一天完成签到 ,获得积分10
18秒前
Thunnus001完成签到 ,获得积分10
33秒前
53秒前
56秒前
qiandi完成签到 ,获得积分10
1分钟前
苏苏苏发布了新的文献求助10
1分钟前
冠状动脉发布了新的文献求助10
1分钟前
creep2020完成签到,获得积分10
1分钟前
简奥斯汀完成签到 ,获得积分10
1分钟前
苏苏苏发布了新的文献求助10
1分钟前
喜悦的唇彩完成签到,获得积分10
1分钟前
2分钟前
2分钟前
欧哈纳完成签到 ,获得积分10
2分钟前
ShishanXue完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Omni发布了新的文献求助10
2分钟前
3分钟前
碗碗豆喵完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
NSJN2022完成签到,获得积分10
3分钟前
3分钟前
NSJN2022发布了新的文献求助10
3分钟前
科研通AI6应助NSJN2022采纳,获得10
3分钟前
3分钟前
4分钟前
智慧金刚发布了新的文献求助10
4分钟前
简单花花完成签到,获得积分10
4分钟前
包容问雁完成签到,获得积分10
4分钟前
智慧金刚发布了新的文献求助10
4分钟前
包容问雁发布了新的文献求助10
4分钟前
哇哈完成签到 ,获得积分10
4分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450245
求助须知:如何正确求助?哪些是违规求助? 4558077
关于积分的说明 14265402
捐赠科研通 4481483
什么是DOI,文献DOI怎么找? 2454891
邀请新用户注册赠送积分活动 1445638
关于科研通互助平台的介绍 1421614