Improving the Estimation of Nitrogen and Phosphorus Concentrations in Lakes and Reservoirs Using a Stacked Approach

环境科学 水质 营养物 生物群 气候变化 水文学(农业) 富营养化 生态学 地质学 生物 化学 有机化学 岩土工程
作者
Chunzi Ma,Hanxiao Zhang,Shouliang Huo,Wenpan Li,Yong Liu,Zhe Xiao,Yunfeng Xu,Fengchang Wu
出处
期刊:Earth’s Future [Wiley]
卷期号:11 (3) 被引量:6
标识
DOI:10.1029/2022ef003013
摘要

Abstract A comprehensive and accurate estimation of water quality in lakes and reservoirs is vital for the protection of the aquatic biota. Research on the spatiotemporal variations of nitrogen (N) and phosphorus (P) concentrations in lacustrine systems is typically plagued, however, by a lack of long‐term, spatially continuous monitoring data. This paper assembled a 30‐year (1989–2018) data set of water quality in 586 lakes and reservoirs in China, along with basin characteristics and climate conditions, forming the comprehensive data set available. These data were then used in a stacking model (based on random forest, support vector regression, and K‐nearest neighbor models) to identify the relationships between nutrient concentrations and their influencing factors, including net anthropogenic N/P inputs, geographical position, climate, land use pattern, and soil type. The stacking models were developed using data collected over multiple time scales (annual, seasonal, and monthly), which were then applied to reconstruct TN and TP concentrations during the periods of 1980–2018 and 2020s–2050s under the climate scenarios of RCP 4.5 and RCP 8.5. The accuracy of the stacking models was 99.1% and 98.3% for TN and TP concentrations using ensembled data, respectively. The interannual variations in TN and TP contents in the 586 lakes and reservoirs during 1980–2018 exhibited a non‐monotonic pattern with a peak of 1.12 and 0.049 mg/L in 2007, respectively. This study demonstrates that stacking machine learning models represent a new effective approach for estimating nutrient concentrations in unmonitored lakes and reservoirs across broad spatiotemporal scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zmy发布了新的文献求助10
刚刚
TGX完成签到,获得积分10
刚刚
刚刚
Harry应助科研通管家采纳,获得10
1秒前
wtian1221应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
1秒前
smottom应助科研通管家采纳,获得10
1秒前
shhoing应助科研通管家采纳,获得10
1秒前
Harry应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
mwj发布了新的文献求助10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
77应助科研通管家采纳,获得10
1秒前
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
Harry应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
烟花应助曾曾采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
昏睡的蟠桃应助科研通管家采纳,获得200
2秒前
思源应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Harry应助科研通管家采纳,获得10
2秒前
陶醉的啤酒完成签到 ,获得积分20
2秒前
shhoing应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Frank应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540269
求助须知:如何正确求助?哪些是违规求助? 4626796
关于积分的说明 14601195
捐赠科研通 4567835
什么是DOI,文献DOI怎么找? 2504244
邀请新用户注册赠送积分活动 1481913
关于科研通互助平台的介绍 1453562