Apatite trace element composition as an indicator of ore deposit types: A machine learning approach

磷灰石 矽卡岩 地质学 微量元素 矿物学 地球化学 石英 流体包裹体 古生物学
作者
Kun‐Feng Qiu,Tong Zhou,David Chew,Zhaoliang Hou,Axel Müller,Hao-Cheng Yu,Robert G. Lee,Huan Chen,Jun Deng
出处
期刊:American Mineralogist [Mineralogical Society of America]
卷期号:109 (2): 303-314 被引量:26
标识
DOI:10.2138/am-2022-8805
摘要

Abstract The diverse suite of trace elements incorporated into apatite in ore-forming systems has important applications in petrogenesis studies of mineral deposits. Trace element variations in apatite can be used to distinguish between fertile and barren environments, and thus have potential as mineral exploration tools. Such classification approaches commonly employ two-variable scatterplots of apatite trace element compositional data. While such diagrams offer accessible visualization of compositional trends, they often struggle to effectively distinguish ore deposit types because they do not employ all the high-dimensional (i.e., multi-element) information accessible from high-quality apatite trace element analysis. To address this issue, we use a supervised machine-learning-based approach (eXtreme Gradient Boosting, XGBoost) to correlate apatite compositions with ore deposit type, utilizing such high-dimensional information. We evaluated 8629 apatite trace element data from five ore deposit types (porphyry, skarn, orogenic Au, iron oxide copper gold, and iron oxide-apatite) along with unmineralized magmatic and metamorphic apatite to identify discriminating parameters for the individual deposit types, as well as for mineralized systems. According to feature selection, eight elements (Th, U, Sr, Eu, Dy, Y, Nd, and La) improve the model performance. We show that the XGBoost classifier efficiently and accurately classifies high-dimensional apatite trace element data according to the ore deposit type (overall accuracy: 94% and F1 score: 89%). Interpretation of the model using the SHAPley Additive exPlanations (SHAP) tool shows that Th, U, Eu, and Nd are the most indicative elements for classifying deposit types using apatite trace element chemistry. Our approach has broad implications for the better understanding of the sources, chemistry, and evolution of melts and hydrothermal fluids resulting in ore deposit formation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Edward_Hu完成签到,获得积分10
刚刚
威武从霜发布了新的文献求助10
刚刚
如星完成签到 ,获得积分10
1秒前
1秒前
1秒前
pny发布了新的文献求助10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
ccm应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
顺利大门应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
ccm应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
3秒前
ding应助科研通管家采纳,获得10
3秒前
渡花应助科研通管家采纳,获得10
3秒前
chentao发布了新的文献求助10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
科研通AI6应助承一采纳,获得10
4秒前
小蘑菇应助甘楽采纳,获得10
4秒前
搜集达人应助积极毛巾采纳,获得10
4秒前
哈哈镜阿姐应助读二白采纳,获得10
4秒前
Criss0916发布了新的文献求助10
4秒前
crazy发布了新的文献求助10
4秒前
4秒前
5秒前
Jim发布了新的文献求助10
6秒前
hahah完成签到,获得积分10
7秒前
科研通AI6应助1123采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642700
求助须知:如何正确求助?哪些是违规求助? 4759529
关于积分的说明 15018532
捐赠科研通 4801206
什么是DOI,文献DOI怎么找? 2566533
邀请新用户注册赠送积分活动 1524546
关于科研通互助平台的介绍 1484071