图像融合
人工智能
融合
计算机科学
加权
高斯滤波器
计算机视觉
高斯分布
像素
图像(数学)
光学(聚焦)
滤波器(信号处理)
GSM演进的增强数据速率
模式识别(心理学)
融合规则
光学
哲学
放射科
物理
医学
量子力学
语言学
出处
期刊:Entropy
[Multidisciplinary Digital Publishing Institute]
日期:2023-08-15
卷期号:25 (8): 1215-1215
被引量:14
摘要
The separate analysis of images obtained from a single source using different camera settings or spectral bands, whether from one or more than one sensor, is quite difficult. To solve this problem, a single image containing all of the distinctive pieces of information in each source image is generally created by combining the images, a process called image fusion. In this paper, a simple and efficient, pixel-based image fusion method is proposed that relies on weighting the edge information associated with each pixel of all of the source images proportional to the distance from their neighbors by employing a Gaussian filter. The proposed method, Gaussian of differences (GD), was evaluated using multi-modal medical images, multi-sensor visible and infrared images, multi-focus images, and multi-exposure images, and was compared to existing state-of-the-art fusion methods by utilizing objective fusion quality metrics. The parameters of the GD method are further enhanced by employing the pattern search (PS) algorithm, resulting in an adaptive optimization strategy. Extensive experiments illustrated that the proposed GD fusion method ranked better on average than others in terms of objective quality metrics and CPU time consumption.
科研通智能强力驱动
Strongly Powered by AbleSci AI