Data Augmentation Ensemble Module based on Natural Guidance for X-ray Prohibited Items Detection

计算机科学 目标检测 人工智能 任务(项目管理) 图像(数学) 计算机视觉 对象(语法) 集成学习 模式识别(心理学) 机器学习 数据挖掘 工程类 系统工程
作者
Jun He,Yangcai Zhong,Bo Sun,Yinghui Zhang,Jia‐Bao Liu
标识
DOI:10.1109/ijcnn54540.2023.10191378
摘要

Automatic prohibited items detection plays an important role in protecting public security. Till now, object detection powered by deep learning provides a promising solution to automatic security inspection. However, in the one hand, according to the imaging principle of X-ray images, texture information would be lost, and in the other hand, different prohibited items with the same material are easily confused for the similar imaging color, leading to poor detection performance. Thus, to improve the detection performance of the basic object detection models on prohibited items detection task, we first propose the Data Augmentation Ensemble Module (DAEM) based on Nature Guidance for more accurate prohibited items detection. Specifically, inspired by the fact that inspectors detect items based on the characteristics of prohibited items in nature, we introduce natural images as prior knowledge to build X-ray security image - natural image sample pairs for supervising the model training. Besides, we adopt data augmentation strategies to enhance the diversity of the X-ray images, and then we combine the predictions from different data augmentation methods by ensemble learning to yield more accurate results. We verify the DAEM's performance by plug it into three different object detection models, and the experiments demonstrate that our framework can significantly improve the performance compared with the SOTA method on the PIDray dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rico完成签到,获得积分20
1秒前
3秒前
3秒前
斯文败类应助麻生采纳,获得10
6秒前
丘比特应助fo_shuo采纳,获得10
7秒前
Nancy发布了新的文献求助10
7秒前
7秒前
朱祥龙完成签到,获得积分10
8秒前
8秒前
所所应助如意草丛采纳,获得10
9秒前
10秒前
10秒前
披荆斩棘的王多福完成签到,获得积分10
10秒前
12秒前
13秒前
大气夜南发布了新的文献求助30
13秒前
13秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
冰魂应助科研通管家采纳,获得10
16秒前
wy.he应助科研通管家采纳,获得10
16秒前
震震应助科研通管家采纳,获得20
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
wy.he应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
wy.he应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
17秒前
今后应助科研通管家采纳,获得10
17秒前
wy.he应助科研通管家采纳,获得10
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778170
求助须知:如何正确求助?哪些是违规求助? 3323851
关于积分的说明 10215999
捐赠科研通 3039020
什么是DOI,文献DOI怎么找? 1667747
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758339