GMHANN: A Novel Traffic Flow Prediction Method for Transportation Management Based on Spatial-Temporal Graph Modeling

计算机科学 流量(计算机网络) 数据挖掘 图形 智能交通系统 交叉口(航空) 循环神经网络 数据建模 实时计算 人工智能 人工神经网络 工程类 运输工程 理论计算机科学 计算机安全 数据库
作者
Qing Wang,Weiping Liu,Wang Xiu,Xinghong Chen,Guannan Chen,Qingxiang Wu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (1): 386-401 被引量:2
标识
DOI:10.1109/tits.2023.3306559
摘要

Traffic flow prediction significantly affects the intelligent transportation for digitized urban transportation management and urban traffic control. Considering the complexity and strong non-linearity shown by traffic flow data, the establishment of model regarding spatial correlations as well as time dynamics can remarkably help to accurately predict traffic flow. A lot of current methods are mainly focused on using the historical time series information of observations to extract sequence features. Such forecasting will cause the lack of information and lead to poor accuracy of the forecast results. Although some studies applied spatial-temporal information, but they are not very accurate. In network-based problems, we would consider the constraint of road networks. Specifically, intersection flows, road speed and travel time are related to road networks. Also, they restrict the long-term prediction of traffic flow. For addressing above issues, a graph multi-head attention neural network (GMHANN) is proposed for the purpose of traffic flow prediction. In design, the GMHANN has an encoder-decoder structure. By the encoder, the data are compressed into a hidden space representation, which, relying on the decoder, is reconstructed as output. Furthermore, we put forward a novel gated recurrent unit (GRU) module (AGRU) based on multi-head attention for the effective extraction of the spatial and temporal features exhibited by traffic flow data. Other state-of-the-art methods are employed for evaluating four public datasets, which reveals that our proposed method outperforms others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤H发布了新的文献求助20
刚刚
Jau完成签到,获得积分0
1秒前
含蓄绿兰完成签到,获得积分10
1秒前
务实羊发布了新的文献求助20
1秒前
小心完成签到 ,获得积分10
2秒前
2秒前
JasVe完成签到 ,获得积分10
2秒前
3秒前
123完成签到,获得积分10
3秒前
科研通AI5应助陈昭琼采纳,获得10
4秒前
岁月如歌完成签到,获得积分0
5秒前
ljn0406完成签到 ,获得积分10
6秒前
胡杨完成签到,获得积分10
6秒前
keyan发布了新的文献求助10
7秒前
小肥羊发布了新的文献求助10
8秒前
你不知道完成签到 ,获得积分10
8秒前
10秒前
bkagyin应助yycc采纳,获得10
10秒前
FashionBoy应助lizhiqian2024采纳,获得10
12秒前
科研通AI5应助lizhiqian2024采纳,获得10
12秒前
13秒前
陈昭琼发布了新的文献求助10
16秒前
17秒前
17秒前
恋风恋歌发布了新的文献求助10
18秒前
不辞完成签到,获得积分10
21秒前
AI完成签到 ,获得积分10
21秒前
高兴可乐发布了新的文献求助20
23秒前
23秒前
23秒前
ay发布了新的文献求助10
24秒前
VvV完成签到,获得积分10
26秒前
yan完成签到,获得积分10
26秒前
勤劳涵山发布了新的文献求助10
28秒前
大鱼发布了新的文献求助10
29秒前
香菜味钠片完成签到,获得积分10
29秒前
啾啾完成签到,获得积分10
30秒前
31秒前
森林木发布了新的文献求助10
31秒前
ay完成签到,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782940
求助须知:如何正确求助?哪些是违规求助? 3328272
关于积分的说明 10235518
捐赠科研通 3043399
什么是DOI,文献DOI怎么找? 1670491
邀请新用户注册赠送积分活动 799731
科研通“疑难数据库(出版商)”最低求助积分说明 759050