Prediction of CO2 emission peak and reduction potential of Beijing-Tianjin-Hebei urban agglomeration

城市群 北京 环境科学 蒙特卡罗方法 估计 集聚经济 地理 统计 中国 数学 工程类 经济地理学 经济 经济增长 考古 系统工程
作者
Jiao Ren,Hui Bai,Shunchang Zhong,Zhifang Wu
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:425: 138945-138945 被引量:13
标识
DOI:10.1016/j.jclepro.2023.138945
摘要

Forecasting the future emission trajectories and the relating sensitive driving factors of emissions for cities is of great significance to formulate realizable CO2 mitigation policies. To proceed the forecasting, studies on peak prediction and quantification of reduction potential at the city level are essential. However, the studies in the area are very limited. Selecting the Beijing-Tianjin-Hebei urban agglomeration (BTH) as the study region, this paper aims to contribute to the research area and provides implications for other cities or urban agglomerations. The Kaya identity and multi-scenario simulation were employed to predict the dynamic evolution pathways of CO2 emissions from 2021 to 2035 and explore the differential CO2 peak time, peak value, and reduction potential for 13 cities in BTH. Monte Carlo simulation, Mann-Kendall trend test and Sen's slope estimation method are jointly used to reduce uncertainties in estimation. The Monte Carlo simulation results show that most cities in BTH have already reached their CO2 emissions peak, while Tianjin, Langfang, Cangzhou and Tangshan are expected to reach their peaks between 2025 and 2030. Among them, 5 and 8 cities have the risk of not reaching their peak before 2035 in the high consumption scenario (HCS) and extensive development scenario (EDS) respectively. Comparative analysis reveals that low-carbon scenario (LCS) and sustainable development scenario (SDS) have significant effects on emissions reductions. The top three cities in terms of accumulative emission reduction in 2021–2035 are Tianjin, Tangshan and Cangzhou, estimated as 117.82–250.75 Mt CO2 in LCS and 217.77–454.10 Mt CO2 in SDS, respectively. The results of sensitivity analysis reveal that the most critical driver of CO2 emissions in Beijing is population, while that is GDP per capita for Tianjin. Langfang and Hengshui showed the highest sensitivity to energy intensity. Accordingly, these cities have differentiated concerns and priorities to achieve their carbon peak goal as scheduled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
ding应助lizhiqian2024采纳,获得10
4秒前
郭郭郭发布了新的文献求助10
5秒前
王鹏发布了新的文献求助10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
MM11111应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
MM11111应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
NexusExplorer应助魏晨采纳,获得10
7秒前
8秒前
司徒诗蕾完成签到 ,获得积分10
8秒前
khurram完成签到,获得积分10
10秒前
伊叶之丘完成签到 ,获得积分10
12秒前
王鹏完成签到,获得积分10
13秒前
15秒前
周周发布了新的文献求助10
15秒前
难过的冬云完成签到,获得积分20
15秒前
18秒前
毅青6796发布了新的文献求助30
18秒前
19秒前
万能图书馆应助木南采纳,获得10
19秒前
李浩发布了新的文献求助10
19秒前
伶俐千凝发布了新的文献求助10
23秒前
23秒前
钦钦小豆包给小胡的求助进行了留言
24秒前
VT完成签到,获得积分10
24秒前
Kate发布了新的文献求助10
25秒前
末末完成签到,获得积分10
26秒前
阿南发布了新的文献求助10
27秒前
27秒前
Rain发布了新的文献求助10
28秒前
30秒前
斯文败类应助qinqin采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781731
求助须知:如何正确求助?哪些是违规求助? 3327303
关于积分的说明 10230369
捐赠科研通 3042188
什么是DOI,文献DOI怎么找? 1669800
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792