Deep Learning Super-Resolution Reconstruction for Fast and Motion-Robust T2-weighted Prostate MRI

医学 核医学 前列腺 图像质量 前列腺癌 标准差 人工智能 算法 数学 计算机科学 统计 图像(数学) 内科学 癌症
作者
Leon Bischoff,Johannes M. Peeters,Leonie Weinhold,Philipp Krausewitz,Jörg Ellinger,Christoph Katemann,Alexander Isaak,O. Weber,Daniel Kuetting,Ulrike Attenberger,Claus C. Pieper,Alois M. Sprinkart,Julian A. Luetkens
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (3) 被引量:35
标识
DOI:10.1148/radiol.230427
摘要

Background Deep learning (DL) reconstructions can enhance image quality while decreasing MRI acquisition time. However, DL reconstruction methods combined with compressed sensing for prostate MRI have not been well studied. Purpose To use an industry-developed DL algorithm to reconstruct low-resolution T2-weighted turbo spin-echo (TSE) prostate MRI scans and compare these with standard sequences. Materials and Methods In this prospective study, participants with suspected prostate cancer underwent prostate MRI with a Cartesian standard-resolution T2-weighted TSE sequence (T2C) and non-Cartesian standard-resolution T2-weighted TSE sequence (T2NC) between August and November 2022. Additionally, a low-resolution Cartesian DL-reconstructed T2-weighted TSE sequence (T2DL) with compressed sensing DL denoising and resolution upscaling reconstruction was acquired. Image sharpness was assessed qualitatively by two readers using a five-point Likert scale (from 1 = nondiagnostic to 5 = excellent) and quantitatively by calculating edge rise distance. The Friedman test and one-way analysis of variance with post hoc Bonferroni and Tukey tests, respectively, were used for group comparisons. Prostate Imaging Reporting and Data System (PI-RADS) score agreement between sequences was compared by using Cohen κ. Results This study included 109 male participants (mean age, 68 years ± 8 [SD]). Acquisition time of T2DL was 36% and 29% lower compared with that of T2C and T2NC (mean duration, 164 seconds ± 20 vs 257 seconds ± 32 and 230 seconds ± 28; P < .001 for both). T2DL showed improved image sharpness compared with standard sequences using both qualitative (median score, 5 [IQR, 4-5] vs 4 [IQR, 3-4] for T2C and 4 [IQR, 3-4] for T2NC; P < .001 for both) and quantitative (mean edge rise distance, 0.75 mm ± 0.39 vs 1.15 mm ± 0.68 for T2C and 0.98 mm ± 0.65 for T2NC; P < .001 and P = .01) methods. PI-RADS score agreement between T2NC and T2DL was excellent (κ range, 0.92-0.94 [95% CI: 0.87, 0.98]). Conclusion DL reconstruction of low-resolution T2-weighted TSE sequences enabled accelerated acquisition times and improved image quality compared with standard acquisitions while showing excellent agreement with conventional sequences for PI-RADS ratings. Clinical trial registration no. NCT05820113 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Turkbey in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助cyy采纳,获得10
1秒前
1秒前
flash完成签到,获得积分10
1秒前
小蘑菇应助欧阳采纳,获得10
3秒前
TE发布了新的文献求助10
4秒前
斯文远望完成签到,获得积分10
5秒前
清秀豪英发布了新的文献求助10
5秒前
6秒前
梦追阳完成签到 ,获得积分10
6秒前
喜欢玩辅助完成签到,获得积分10
9秒前
桃博完成签到,获得积分10
9秒前
tourist585完成签到,获得积分10
9秒前
党弛完成签到,获得积分10
10秒前
梦追阳关注了科研通微信公众号
10秒前
我说苏卡你说不列完成签到,获得积分10
10秒前
大橘完成签到 ,获得积分10
10秒前
mm完成签到,获得积分10
11秒前
顺心的雨真完成签到,获得积分10
11秒前
科研通AI5应助虚幻的玉米采纳,获得10
12秒前
神明发布了新的文献求助30
13秒前
大模型应助cyy采纳,获得10
14秒前
15秒前
15秒前
yc完成签到 ,获得积分10
16秒前
17秒前
研友_LwlAgn发布了新的文献求助10
20秒前
Ava应助阿云采纳,获得10
22秒前
guan发布了新的文献求助10
23秒前
25秒前
amupf完成签到 ,获得积分10
25秒前
25秒前
26秒前
力劈华山完成签到,获得积分10
27秒前
搞怪雁风发布了新的文献求助10
28秒前
29秒前
29秒前
残月初升完成签到,获得积分10
30秒前
唯梦发布了新的文献求助10
30秒前
李爱国应助CardiB采纳,获得10
32秒前
LGJ完成签到,获得积分10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783306
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237387
捐赠科研通 3043770
什么是DOI,文献DOI怎么找? 1670643
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130