AesCLIP: Multi-Attribute Contrastive Learning for Image Aesthetics Assessment

计算机科学 领域(数学分析) 人工智能 代表(政治) 图像(数学) 编码(集合论) 自然语言处理 数学 数学分析 集合(抽象数据类型) 政治 政治学 法学 程序设计语言
作者
Xiangfei Sheng,Leida Li,Pengfei Chen,Jinjian Wu,Weisheng Dong,Yuzhe Yang,Liwu Xu,Yaqian Li,Guangming Shi
标识
DOI:10.1145/3581783.3611969
摘要

Image aesthetics assessment (IAA) aims at predicting the aesthetic quality of images. Recently, large pre-trained vision-language models, like CLIP, have shown impressive performances on various visual tasks. When it comes to IAA, a straightforward way is to finetune the CLIP image encoder using aesthetic images. However, this can only achieve limited success without considering the uniqueness of multimodal data in the aesthetics domain. People usually assess image aesthetics according to fine-grained visual attributes, e.g., color, light and composition. However, how to learn aesthetics-aware attributes from CLIP-based semantic space has not been addressed before. With this motivation, this paper presents a CLIP-based multi-attribute contrastive learning framework for IAA, dubbed AesCLIP. Specifically, AesCLIP consists of two major components, i.e., aesthetic attribute-based comment classification and attribute-aware learning. The former classifies the aesthetic comments into different attribute categories. Then the latter learns an aesthetic attribute-aware representation by contrastive learning, aiming to mitigate the domain shift from the general visual domain to the aesthetics domain. Extensive experiments have been done by using the pre-trained AesCLIP on four popular IAA databases, and the results demonstrate the advantage of AesCLIP over the state-of-the-arts. The source code will be public at https://github.com/OPPOMKLab/AesCLIP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ling2001完成签到,获得积分10
4秒前
张丽妍发布了新的文献求助10
4秒前
6秒前
今后应助吃了就睡采纳,获得10
7秒前
量子星尘发布了新的文献求助10
9秒前
浮游应助handada采纳,获得10
10秒前
少年锦时完成签到,获得积分10
10秒前
11秒前
li完成签到 ,获得积分10
12秒前
默默善愁发布了新的文献求助10
12秒前
曼曼完成签到,获得积分10
14秒前
无花果应助谭代涛采纳,获得10
14秒前
BowieHuang应助凌乱采纳,获得10
15秒前
嘿嘿发布了新的文献求助10
16秒前
上官若男应助llly采纳,获得10
16秒前
凶狠的雅霜完成签到,获得积分10
16秒前
olekravchenko应助科研通管家采纳,获得10
16秒前
大龙哥886应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
清秀大方嘤嘤猴完成签到,获得积分10
17秒前
思源应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
olekravchenko应助科研通管家采纳,获得10
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
pluto应助科研通管家采纳,获得10
17秒前
17秒前
shhoing应助科研通管家采纳,获得10
17秒前
大龙哥886应助科研通管家采纳,获得10
17秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
Leif应助科研通管家采纳,获得20
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
olekravchenko应助科研通管家采纳,获得10
17秒前
pluto应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
所所应助科研通管家采纳,获得10
17秒前
Leif应助科研通管家采纳,获得20
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537662
求助须知:如何正确求助?哪些是违规求助? 4625146
关于积分的说明 14594680
捐赠科研通 4565616
什么是DOI,文献DOI怎么找? 2502535
邀请新用户注册赠送积分活动 1481073
关于科研通互助平台的介绍 1452288