亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Characterization of the Prognosis and Tumor Microenvironment of Cellular Senescence-related Genes through scRNA-seq and Bulk RNA-seq Analysis in GC

RNA序列 衰老 基因 生物 核糖核酸 计算生物学 肿瘤微环境 癌症 转录组 遗传学 基因表达
作者
Guoxiang Guo,Zhifeng Zhou,Shuping Chen,Jiaqing Cheng,Yang Wang,Tianshu Lan,Yunbin Ye
出处
期刊:Recent Patents on Anti-cancer Drug Discovery [Bentham Science Publishers]
卷期号:19 (4): 530-542 被引量:2
标识
DOI:10.2174/0115748928255417230924191157
摘要

Background: Cellular senescence (CS) is thought to be the primary cause of cancer development and progression. This study aimed to investigate the prognostic role and molecular subtypes of CS-associated genes in gastric cancer (GC). Materials and Methods: The CellAge database was utilized to acquire CS-related genes. Expression data and clinical information of GC patients were obtained from The Cancer Genome Atlas (TCGA) database. Patients were then grouped into distinct subtypes using the “Consesus- ClusterPlus” R package based on CS-related genes. An in-depth analysis was conducted to assess the gene expression, molecular function, prognosis, gene mutation, immune infiltration, and drug resistance of each subtype. In addition, a CS-associated risk model was developed based on Cox regression analysis. The nomogram, constructed on the basis of the risk score and clinical factors, was formulated to improve the clinical application of GC patients. Finally, several candidate drugs were screened based on the Cancer Therapeutics Response Portal (CTRP) and PRISM Repurposing dataset. Results: According to the cluster result, patients were categorized into two molecular subtypes (C1 and C2). The two subtypes revealed distinct expression levels, overall survival (OS) and clinical presentations, mutation profiles, tumor microenvironment (TME), and drug resistance. A risk model was developed by selecting eight genes from the differential expression genes (DEGs) between two molecular subtypes. Patients with GC were categorized into two risk groups, with the high-risk group exhibiting a poor prognosis, a higher TME level, and increased expression of immune checkpoints. Function enrichment results suggested that genes were enriched in DNA repaired pathway in the low-risk group. Moreover, the Tumor Immune Dysfunction and Exclusion (TIDE) analysis indicated that immunotherapy is likely to be more beneficial for patients in the low-risk group. Drug analysis results revealed that several drugs, including ML210, ML162, dasatinib, idronoxil, and temsirolimus, may contribute to the treatment of GC patients in the high-risk group. Moreover, the risk model genes presented a distinct expression in single-cell levels in the GSE150290 dataset. Conclusion: The two molecular subtypes, with their own individual OS rate, expression patterns, and immune infiltration, lay the foundation for further exploration into the GC molecular mechanism. The eight gene signatures could effectively predict the GC prognosis and can serve as reliable markers for GC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
8秒前
sjbai发布了新的文献求助10
12秒前
叶子发布了新的文献求助10
14秒前
脑洞疼应助坚定的凝梦采纳,获得10
16秒前
Lisen发布了新的文献求助30
20秒前
23秒前
独特的高山完成签到,获得积分10
25秒前
27秒前
28秒前
叶子完成签到,获得积分10
28秒前
Kevin完成签到,获得积分10
29秒前
32秒前
小马甲应助橘子洲采纳,获得10
38秒前
大模型应助科研通管家采纳,获得10
57秒前
在水一方应助科研通管家采纳,获得30
57秒前
Aaron完成签到 ,获得积分0
1分钟前
wish完成签到 ,获得积分10
1分钟前
一拳超人完成签到 ,获得积分10
2分钟前
徐zhipei完成签到 ,获得积分10
2分钟前
星际舟完成签到,获得积分10
2分钟前
2分钟前
橘子洲发布了新的文献求助10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
橘子洲完成签到,获得积分10
3分钟前
3分钟前
科研通AI2S应助ljw采纳,获得10
3分钟前
zqq完成签到,获得积分0
3分钟前
江夏清完成签到,获得积分10
3分钟前
奥利奥发布了新的文献求助10
4分钟前
爆米花应助ziyanzhang0228采纳,获得10
4分钟前
hhh完成签到,获得积分10
4分钟前
zz完成签到,获得积分10
4分钟前
xd完成签到,获得积分10
4分钟前
4分钟前
mmyhn发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124283
求助须知:如何正确求助?哪些是违规求助? 3662182
关于积分的说明 11590291
捐赠科研通 3362579
什么是DOI,文献DOI怎么找? 1847653
邀请新用户注册赠送积分活动 912036
科研通“疑难数据库(出版商)”最低求助积分说明 827838