Physical Symptoms, Depressive Symptoms, and Quality of Life in Patients With Heart Failure

医学 生活质量(医疗保健) 星团(航天器) 抑郁症状 胸痛 心力衰竭 物理疗法 萧条(经济学) 横断面研究 可视模拟标度 不利影响 内科学 焦虑 精神科 经济 护理部 程序设计语言 病理 宏观经济学 计算机科学
作者
Seongkum Heo,JungHee Kang,Mi‐Seung Shin,Young‐Hyo Lim,Sun Hwa Kim,Sangsuk Kim,Minjeong An,JinShil Kim
出处
期刊:Journal of Cardiovascular Nursing [Ovid Technologies (Wolters Kluwer)]
卷期号:39 (1): 31-37 被引量:7
标识
DOI:10.1097/jcn.0000000000001043
摘要

Background Physical and psychological symptoms are prevalent in patients with heart failure (HF) and are associated with poor quality of life (QOL) and high hospitalization rates. Thus, it is critical to identify symptom clusters to better manage patients with high-risk symptom cluster(s) and to reduce adverse effects. Objective The aims of this study were to identify clusters of physical HF symptoms (ie, dyspnea during daytime, dyspnea when lying down, fatigue, chest pain, edema, sleeping difficulty, and dizziness) and depressive symptoms and to examine their association with QOL in patients with HF. Methods In this secondary analysis of a cross-sectional study, data on physical HF symptoms (Symptom Status Questionnaire), depressive symptoms (Patient Health Questionnaire-9), and general QOL (European Quality of Scale-Visual Analog Scale) were collected. We identified clusters based on the physical HF symptoms and depressive symptoms using 2-step and k -means cluster analysis methods. Results Chest pain was removed from the model because of the low importance value. Two clusters were revealed (cluster 1, severe symptom cluster, vs cluster 2, less severe symptom cluster) based on the 7 symptoms. In cluster 1, all of the 7 symptoms were more severe, and QOL was poorer than those in cluster 2 (all P s < .001). All the mean and median scores of the 7 symptoms in cluster 1 were higher than those in cluster 2. Conclusions Patients with HF were clearly divided into 2 clusters based on physical HF symptoms and depressive symptoms, which were associated with QOL. Clinicians should assess these symptoms to improve patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
乐乐应助Pessica采纳,获得10
3秒前
烟花应助啦啦啦采纳,获得10
3秒前
Aurora发布了新的文献求助10
3秒前
3秒前
义气的银耳汤完成签到 ,获得积分10
3秒前
核动力驴应助ctttt采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
乐一李发布了新的文献求助10
5秒前
5秒前
5秒前
要减肥的春天完成签到,获得积分10
5秒前
zz发布了新的文献求助10
5秒前
南风南下完成签到 ,获得积分10
6秒前
iNk应助iieee采纳,获得20
6秒前
111111发布了新的文献求助20
6秒前
CodeCraft应助Zziiixl采纳,获得10
6秒前
脑洞疼应助zpctx采纳,获得10
7秒前
至幸发布了新的文献求助10
7秒前
ren发布了新的文献求助10
7秒前
cyq完成签到,获得积分10
7秒前
8秒前
在水一方应助arsenal采纳,获得10
8秒前
优雅的招牌完成签到,获得积分10
8秒前
8秒前
小小完成签到,获得积分10
8秒前
9秒前
9秒前
SciGPT应助xiw采纳,获得10
9秒前
安静的皮皮虾完成签到,获得积分10
9秒前
EKKO发布了新的文献求助10
9秒前
10秒前
丘比特应助鄂X采纳,获得10
10秒前
10秒前
寂寞的钢铁侠完成签到,获得积分10
10秒前
11秒前
在水一方应助青青儿采纳,获得10
11秒前
所所应助MM采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653664
求助须知:如何正确求助?哪些是违规求助? 4790471
关于积分的说明 15065629
捐赠科研通 4812355
什么是DOI,文献DOI怎么找? 2574458
邀请新用户注册赠送积分活动 1530009
关于科研通互助平台的介绍 1488710