Prediction, modelling, and forecasting of PM and AQI using hybrid machine learning

均方误差 决策树 决定系数 相关系数 统计 预测建模 机器学习 线性回归 标准差 数学 计算机科学 人工智能
作者
Mihaela Tinca Udriștioiu,Y. El Mghouchi,Hasan Yıldızhan
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:421: 138496-138496 被引量:26
标识
DOI:10.1016/j.jclepro.2023.138496
摘要

This paper proposes a combination of hybrid models like Input Variable Selection (IVS), Machine Learning (ML), and regression method to predict, model, and forecast the daily concentrations of particulate matter (PM1, PM2.5, PM10) and Air Quality Index (AQI). A sensor placed in the centre of Craiova, Romania, provides a two-year dataset for training, testing, and validation phases. The analysis identifies the most important predictor variables for PM prediction and forecasting. The coefficient of determination (R2) values in this stage exceeded 0.95 (95%), indicating a strong correlation between PM concentrations. The performance of the proposed models is evaluated by objective measures, including root mean squared error (RMSE) and standard deviation (σ). RMSE ranged between 0.65 and 1 μg/m3, while σ has values between 2.75 and 4.1 μg/m3, reflecting a high level of precision and a successful performance of the proposed models. Furthermore, 13 multivariable-based PM models are developed in this study and adjusted using a hybrid Least Square - Decision Tree approach. The R2 values for these adjusted models range from 0.66 to 0.75, while the RMSE and σ vary between 8 and 9.1 μg/m3. Finally, a handled application for multistep-ahead time series forecasting is elaborated by combining the Nonlinear System Identification (NARMAX) approach with Decision Tree machine learning. This application allows for forecasting PM concentrations and AQI for the next periods. The R2 values obtained in this stage surpass 0.93, indicating almost a high level of accuracy. The RMSE ranged between 4.43 and 6.25 μg/m3, while the σ ranged between 4.44 and 6.26 μg/m3, further validating the precision of our forecasting model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安白发布了新的文献求助10
1秒前
www268完成签到 ,获得积分10
1秒前
星星完成签到,获得积分10
1秒前
super chan完成签到,获得积分10
2秒前
贾晓宇发布了新的文献求助10
2秒前
haimianbaobao完成签到 ,获得积分10
2秒前
3秒前
怡然冷安完成签到,获得积分10
3秒前
大气白翠完成签到,获得积分10
4秒前
活泼蜡烛完成签到,获得积分10
5秒前
5秒前
6秒前
Akim应助土豆采纳,获得10
6秒前
海盐气泡水完成签到,获得积分10
7秒前
deng203发布了新的文献求助10
7秒前
科研通AI5应助叔叔采纳,获得10
8秒前
8秒前
老李完成签到,获得积分10
8秒前
8秒前
jenningseastera应助zww采纳,获得20
9秒前
田様应助zww采纳,获得10
9秒前
传奇3应助zww采纳,获得10
9秒前
安白完成签到,获得积分10
10秒前
10秒前
醉熏的夏兰完成签到,获得积分10
10秒前
11秒前
sleet发布了新的文献求助20
11秒前
lishihao发布了新的文献求助10
11秒前
Quentin9998发布了新的文献求助10
12秒前
七曜发布了新的文献求助10
12秒前
可爱的函函应助涵泽采纳,获得10
12秒前
li完成签到 ,获得积分10
13秒前
13秒前
cdercder应助xzy998采纳,获得10
14秒前
奋斗的威完成签到,获得积分10
15秒前
李俊枫发布了新的文献求助30
16秒前
16秒前
16秒前
飘逸的山柏完成签到 ,获得积分10
16秒前
lishihao完成签到,获得积分10
17秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346927
关于积分的说明 10331008
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763770