Efficient nnU-Net for Brain Tumor Segmentation

计算机科学 分割 编码器 卷积(计算机科学) 瓶颈 深度学习 光学(聚焦) 计算复杂性理论 人工智能 模式识别(心理学) 算法 人工神经网络 物理 光学 嵌入式系统 操作系统
作者
Tirivangani Magadza,Serestina Viriri
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 126386-126397 被引量:7
标识
DOI:10.1109/access.2023.3329517
摘要

Brain tumors are one of the leading causes of death in adults. They come in various shapes and sizes from one patient to another. Sometimes they infiltrate surrounding normal tissues, making it challenging to delineate tumor boundaries. Despite extensive research, the prognosis is still low. Accurate and timely brain tumor segmentation is critical for treatment planning and disease progression monitoring. Automatic segmentation of brain tumors using deep learning methods has been shown to produce high-quality and reproducible segmentation results. Specifically, the encoder-decoder networks, like the U-Nets, have dominated the previous BraTS Challenges because of their superior performance. Due to the importance of high-quality segmentation, most state-of-the-art models focus more on pushing the boundaries of the current methods at the expense of computational complexity. The computational budget for practical applications is minimal, requiring technological solutions that balance accuracy and available computational resources. In this study, we extended the basic U-Net model in the nnU-Net by replacing the basic 3D convolution blocks with bottleneck units utilizing depthwise-separable convolutions. Furthermore, we introduced the shuffle attention mechanism in the skip connections to compensate for the slight loss in segmentation accuracy due to a reduction in number of parameters. Extensive experimental results of the BraTS 2020 dataset reviewed that the proposed modifications achieved competitive performance at a lower computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱大美完成签到,获得积分10
刚刚
彘shen完成签到 ,获得积分10
刚刚
赵润泽完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
嘎嘎嘎完成签到,获得积分10
2秒前
lic完成签到,获得积分10
3秒前
Duke完成签到,获得积分10
3秒前
沉静的采波完成签到 ,获得积分10
4秒前
珍珍完成签到,获得积分10
4秒前
5秒前
海蓝云天完成签到,获得积分10
5秒前
轻松的穆发布了新的文献求助10
5秒前
shhoing应助嘎嘎嘎采纳,获得10
6秒前
6秒前
受伤毛豆完成签到,获得积分10
6秒前
Nothing完成签到,获得积分10
7秒前
ZZ发布了新的文献求助10
7秒前
7秒前
鹿c3完成签到,获得积分10
8秒前
FashionBoy应助爱大美采纳,获得10
8秒前
科研通AI6应助michael采纳,获得10
8秒前
8秒前
zhegewa完成签到,获得积分10
9秒前
9秒前
9秒前
wang发布了新的文献求助10
9秒前
小马甲应助科研通管家采纳,获得30
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
Wind应助科研通管家采纳,获得10
9秒前
shhoing应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
minkuuuuuuu应助科研通管家采纳,获得10
9秒前
香蕉觅云应助斯文的海安采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
9秒前
Mic应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540081
求助须知:如何正确求助?哪些是违规求助? 4626714
关于积分的说明 14600589
捐赠科研通 4567663
什么是DOI,文献DOI怎么找? 2504126
邀请新用户注册赠送积分活动 1481862
关于科研通互助平台的介绍 1453482