Discriminative subspace embedded dynamic geometrical and statistical alignment based on pseudo-label correction for cross-domain bearing fault diagnosis

判别式 子空间拓扑 计算机科学 冗余(工程) 模式识别(心理学) 分类器(UML) 人工智能 统计模型 线性子空间 分歧(语言学) 算法 数学 语言学 哲学 几何学 操作系统
作者
Huoyao Xu,Jie Liu,Xiangyu Peng,Junlang Wang,Chaoming He
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 015001-015001 被引量:2
标识
DOI:10.1088/1361-6501/acfab3
摘要

Abstract Many domain adaptation (DA) approaches have been developed to address the challenge of domain divergence in cross-domain fault diagnosis. However, most of them only attempt to align statistical distribution while neglecting geometric alignment between source and target data. Furthermore, the use of some unreliable pseudo-labels may cause geometrical and statistical distributions mismatching and interfere with the DA model generating correct pseudo-labels during the iterative learning. In this paper, we propose a new model called discriminative subspace embedded dynamic geometrical and statistical alignment based on pseudo-label correction (DSDGSA-PC) for bearing fault diagnosis. Firstly, discriminative subspace alignment is proposed to mitigate feature redundancy and divergence by generating aligned subspaces for two domains, while preserving class discriminative information and global structures of data. Then, DSDGSA-PC leverages the representer theorem and the principle of structural risk minimization to learn a domain-invariant classifier in the subspace, while minimizing statistical and geometrical shift by jointly optimizing dynamic graph embedding and dynamic weighted distribution alignment strategies. Finally, a novel pseudo-label correction mechanism is integrated into DSDGSA-PC to evaluate the credibility of pseudo-labels and rectify the unreliable ones during the iterations. The experimental results illustrate that DSDGSA-PC has higher transfer performance compared to several advanced methods on 24 transfer tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助宁幼萱采纳,获得10
刚刚
1秒前
隐形曼青应助491采纳,获得30
1秒前
2秒前
liu发布了新的文献求助10
2秒前
吴伊玟完成签到,获得积分10
3秒前
科研通AI5应助巴啦啦采纳,获得10
4秒前
4秒前
科研通AI5应助段玉杰采纳,获得10
5秒前
轻松曲奇给轻松曲奇的求助进行了留言
7秒前
zjy完成签到,获得积分10
8秒前
晶晶发布了新的文献求助10
8秒前
王浩完成签到,获得积分10
8秒前
桐桐应助可爱以松采纳,获得30
9秒前
9秒前
Rg发布了新的文献求助10
9秒前
猪猪hero应助调皮觅荷采纳,获得10
9秒前
11秒前
12秒前
善良安蕾完成签到,获得积分10
12秒前
lmj717发布了新的文献求助20
12秒前
13秒前
JamesPei应助南暮采纳,获得10
13秒前
怡然帅完成签到 ,获得积分10
16秒前
jiojio发布了新的文献求助10
17秒前
宁幼萱发布了新的文献求助10
17秒前
17秒前
WANG发布了新的文献求助10
17秒前
17秒前
18秒前
朱凌娇完成签到,获得积分10
18秒前
18秒前
忧虑的靖巧完成签到 ,获得积分10
20秒前
20秒前
调皮觅荷完成签到,获得积分10
21秒前
木头马尾发布了新的文献求助10
22秒前
科研通AI5应助echo采纳,获得30
22秒前
灰鸽舞发布了新的文献求助10
22秒前
丘比特应助南暮采纳,获得10
22秒前
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814820
求助须知:如何正确求助?哪些是违规求助? 3358947
关于积分的说明 10398754
捐赠科研通 3076401
什么是DOI,文献DOI怎么找? 1689803
邀请新用户注册赠送积分活动 813303
科研通“疑难数据库(出版商)”最低求助积分说明 767599