Nonlinear ultrasonic concrete crack identification with deep learning based on time-frequency image

非线性系统 深度学习 人工智能 超声波传感器 时频分析 计算机科学 傅里叶变换 鉴定(生物学) 模式识别(心理学) 连续小波变换 小波变换 声学 小波 计算机视觉 数学 离散小波变换 数学分析 物理 植物 滤波器(信号处理) 量子力学 生物
作者
Jianfeng Liu,Kui Wang,Mingjie Zhao,Yongjiang Chen
出处
期刊:Nondestructive Testing and Evaluation [Taylor & Francis]
卷期号:39 (5): 1225-1249 被引量:10
标识
DOI:10.1080/10589759.2023.2250513
摘要

ABSTRACTBy combining time-frequency images and deep learning models, the nonlinear ultrasound signals can be classified, detected, and predicted, using the nonlinear coefficient as a fundamental label for training deep learning models. This integrated approach enables quantitative identification and real-time monitoring of concrete damage, promoting the widespread adoption of nonlinear ultrasonic techniques in engineering applications. As a basis, the relationship between damage variations and nonlinear coefficients is discussed by performing nonlinear ultrasonic damage testing on concrete specimens with different crack lengths and angles. The testing signals are converted into time-frequency images using the short-time Fourier transform and the continuous wavelet transform, and both types of images are combined for data augmentation and input into the deep learning model for training, with nonlinear coefficients serving as labels for the time-frequency images. The MobileNetV2, VGG16, and ResNet18 deep learning models are trained separately on time-frequency image datasets for the length specimens, the angle specimens, and the length-angle specimens, and the performance of the different models is evaluated and compared. The results show that all three models have accuracy rates above 94%, indicating good identification performance. Finally, with the example, the nonlinear coefficients of the testing signals are compared with the labels of the nonlinear coefficients in the time-frequency images identified by the deep learning model, which confirms the high accuracy of damage identification by the deep learning model.KEYWORDS: Time-frequency imagedeep learningnonlinear ultrasoundnonlinear coefficientconcrete AcknowledgmentsThe authors appreciate everyone who have contributed to the completion of this study.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe research is funded by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-K202100705), the Chongqing Talent Program "Package System" Project (Grant No. cstc2022ycjh-bgzxm0080), the Chongqing Water Conservancy Science and Technology Project (Grant No. CQSLK-2022002) and the Research and Innovation Program for Graduate Students in Chongqing (Grant No. CYB22236).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助WSZXQ采纳,获得10
1秒前
黄婷婷发布了新的文献求助10
1秒前
共享精神应助山山而川采纳,获得10
2秒前
执着期待完成签到 ,获得积分10
2秒前
zhongjr_hz完成签到,获得积分10
2秒前
程风破浪发布了新的文献求助10
3秒前
6秒前
6秒前
6秒前
JamesPei应助Sunday采纳,获得10
7秒前
加油呀完成签到,获得积分10
8秒前
Panda尧完成签到,获得积分10
8秒前
WSZXQ发布了新的文献求助10
13秒前
11112发布了新的文献求助10
13秒前
斯文败类应助wxd采纳,获得10
16秒前
17秒前
18秒前
21秒前
清水胖子发布了新的文献求助10
24秒前
Leukocyte完成签到 ,获得积分10
26秒前
11111完成签到 ,获得积分10
27秒前
小飞飞应助夏紫儿采纳,获得10
29秒前
清水胖子完成签到,获得积分20
34秒前
顾矜应助zzz采纳,获得10
34秒前
44秒前
46秒前
xiaobai完成签到,获得积分20
46秒前
时尚平卉完成签到,获得积分10
48秒前
魔幻的小蘑菇完成签到 ,获得积分10
49秒前
zzz发布了新的文献求助10
49秒前
山山而川发布了新的文献求助10
51秒前
洪亮完成签到,获得积分0
52秒前
吴钰哲完成签到,获得积分10
52秒前
山山而川完成签到,获得积分20
58秒前
59秒前
奥斯卡完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Sunday发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779780
求助须知:如何正确求助?哪些是违规求助? 3325232
关于积分的说明 10222026
捐赠科研通 3040376
什么是DOI,文献DOI怎么找? 1668788
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758549