神经影像学
神经科学
图形
人工神经网络
计算机科学
心理学
医学
人工智能
理论计算机科学
作者
Shuoyan Zhang,Jiacheng Yang,Ying Zhang,Jiayi Zhong,Wenjing Hu,Chenyang Li,Jiehui Jiang
出处
期刊:Brain Sciences
[Multidisciplinary Digital Publishing Institute]
日期:2023-10-16
卷期号:13 (10): 1462-1462
被引量:5
标识
DOI:10.3390/brainsci13101462
摘要
Neurological disorders (NDs), such as Alzheimer’s disease, have been a threat to human health all over the world. It is of great importance to diagnose ND through combining artificial intelligence technology and brain imaging. A graph neural network (GNN) can model and analyze the brain, imaging from morphology, anatomical structure, function features, and other aspects, thus becoming one of the best deep learning models in the diagnosis of ND. Some researchers have investigated the application of GNN in the medical field, but the scope is broad, and its application to NDs is less frequent and not detailed enough. This review focuses on the research progress of GNNs in the diagnosis of ND. Firstly, we systematically investigated the GNN framework of ND, including graph construction, graph convolution, graph pooling, and graph prediction. Secondly, we investigated common NDs using the GNN diagnostic model in terms of data modality, number of subjects, and diagnostic accuracy. Thirdly, we discussed some research challenges and future research directions. The results of this review may be a valuable contribution to the ongoing intersection of artificial intelligence technology and brain imaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI