A heuristic rule adaptive selection approach for multi-work package project scheduling problem

计算机科学 启发式 调度(生产过程) 动态优先级调度 两级调度 单调速率调度 公平份额计划 作业车间调度 自动计划和调度 数学优化 工业工程 运筹学 人工智能 地铁列车时刻表 操作系统 工程类 数学
作者
Yaning Zhang,Xiao Li,Yue Teng,Geoffrey Qiping Shen,Sijun Bai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122092-122092
标识
DOI:10.1016/j.eswa.2023.122092
摘要

Effectively scheduling a project is crucial for its success, especially after generating work packages from the work breakdown structure during the planning phase. Nevertheless, solving project scheduling problems with multiple work packages is challenging due to the inefficient utilization of work package information in existing scheduling approaches. To address this issue, this paper proposes the Heuristic Rule Adaptive Selection (HAS) approach for the Multi-Work Package Project Scheduling Problem (MWPSP). This approach involves work package information and employs reinforcement learning (RL) for intelligent decision-making in scheduling. First, the MWPSP with the optimization objective of minimizing the Portfolio Delay (PDEL) and the Average Percent Delay (APD) is defined, and a scheduling environment is established that integrates information from both work packages and tasks. Second, a Double Deep Q-network (DDQN) is employed to train agents for adaptively selecting heuristic rules of tasks and work packages. The performance of the HAS approach is then evaluated using a case project and the newly created MWPSP dataset. The experimental results demonstrate that the HAS approach exhibits superior solution quality and computational efficiency in optimizing PDEL and APD compared to heuristics approaches, e.g., single-priority rule-based heuristics and genetic algorithms. This achievement sets the stage for the development of next-generation adaptive scheduling for construction projects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助轩仔采纳,获得10
刚刚
第一张完成签到,获得积分10
1秒前
Akim应助宇圆少女科研版采纳,获得10
1秒前
糊涂的服饰完成签到,获得积分10
1秒前
Marayoung发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
大个应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
wyj0815应助科研通管家采纳,获得10
3秒前
3秒前
情怀应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
AAAAA应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
xiaojiu完成签到,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
yuliyixue完成签到,获得积分10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
MX应助科研通管家采纳,获得20
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
4秒前
秋qiu发布了新的文献求助10
4秒前
霸气凡白发布了新的文献求助10
5秒前
6秒前
高山流水完成签到,获得积分10
6秒前
kenhahahaha发布了新的文献求助10
7秒前
俊秀的半雪完成签到,获得积分10
8秒前
8秒前
9秒前
我是老大应助过客采纳,获得10
9秒前
谦让芹菜完成签到,获得积分10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834697
求助须知:如何正确求助?哪些是违规求助? 3377202
关于积分的说明 10497023
捐赠科研通 3096605
什么是DOI,文献DOI怎么找? 1705084
邀请新用户注册赠送积分活动 820451
科研通“疑难数据库(出版商)”最低求助积分说明 772054