已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

F-SCP: An automatic prompt generation method for specific classes based on visual language pre-training models

计算机科学 班级(哲学) 背景(考古学) 滤波器(信号处理) 人工智能 领域(数学分析) 语言模型 机器学习 变化(天文学) 自然语言处理 计算机视觉 数学 古生物学 数学分析 物理 天体物理学 生物
作者
Bo Han,Xiaoyan Jiang,Zhijun Fang,Hamido Fujita,Yongbin Gao
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:147: 110096-110096 被引量:1
标识
DOI:10.1016/j.patcog.2023.110096
摘要

The zero-shot classification performance of large-scale vision-language pre-training models (e.g., CLIP, BLIP and ALIGN) can be enhanced by incorporating a prompt (e.g., “a photo of a [CLASS]”) before the class words. Modifying the prompt slightly can have significant effect on the classification outcomes of these models. Thus, it is crucial to include an appropriate prompt tailored to the classes. However, manual prompt design is labor-intensive and necessitates domain-specific expertise. The CoOp (Context Optimization) converts hand-crafted prompt templates into learnable word vectors to automatically generate prompts, resulting in substantial improvements for CLIP. However, CoOp exhibited significant variation in classification performance across different classes. Although CoOp-CSC (Class-Specific Context) has a separate prompt for each class, only shows some advantages on fine-grained datasets. In this paper, we propose a novel automatic prompt generation method called F-SCP (Filter-based Specific Class Prompt), which distinguishes itself from the CoOp-UC (Unified Context) model and the CoOp-CSC model. Our approach focuses on prompt generation for low-accuracy classes and similar classes. We add the Filter and SCP modules to the prompt generation architecture. The Filter module selects the poorly classified classes, and then reproduce the prompts through the SCP (Specific Class Prompt) module to replace the prompts of specific classes. Experimental results on six multi-domain datasets shows the superiority of our approach over the state-of-the-art methods. Particularly, the improvement in accuracy for the specific classes mentioned above is significant. For instance, compared with CoOp-UC on the OxfordPets dataset, the low-accuracy classes, such as, Class21 and Class26, are improved by 18% and 12%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alexyusheng完成签到,获得积分10
1秒前
3秒前
爱小妍发布了新的文献求助10
3秒前
4秒前
没有昵称发布了新的文献求助10
4秒前
SciGPT应助cc采纳,获得10
6秒前
爱笑雨双完成签到,获得积分10
6秒前
今夜无人入眠完成签到,获得积分20
7秒前
7秒前
小黑板完成签到,获得积分10
8秒前
alexyusheng关注了科研通微信公众号
9秒前
11秒前
12秒前
科研通AI5应助单纯的雅香采纳,获得10
12秒前
领导范儿应助柠檬采纳,获得10
13秒前
14秒前
15秒前
笑点低南霜完成签到,获得积分10
15秒前
77完成签到 ,获得积分10
15秒前
Hello应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
zho应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
冯乌发布了新的文献求助50
18秒前
爱笑雨双发布了新的文献求助10
18秒前
白开水完成签到,获得积分10
18秒前
20秒前
22秒前
华仔应助火华采纳,获得10
23秒前
23秒前
朱先生发布了新的文献求助10
24秒前
称心奇迹完成签到 ,获得积分10
24秒前
cc完成签到,获得积分20
25秒前
谢幕发布了新的文献求助10
25秒前
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803841
求助须知:如何正确求助?哪些是违规求助? 3348632
关于积分的说明 10339665
捐赠科研通 3064787
什么是DOI,文献DOI怎么找? 1682776
邀请新用户注册赠送积分活动 808429
科研通“疑难数据库(出版商)”最低求助积分说明 764096