Translation of Machine Learning-Based Prediction Algorithms to Personalised Empiric Antibiotic Selection: A Population-Based Cohort Study

医学 头孢吡肟 内科学 舒巴坦钠 氨苄西林 亚胺培南 哌拉西林 他唑巴坦 接收机工作特性 逻辑回归 人口 算法 抗生素 抗生素耐药性 生物 微生物学 数学 遗传学 细菌 铜绿假单胞菌 环境卫生
作者
Chungsoo Kim,Young Hwa Choi,Jung Yoon Choi,Hee Jung Choi,Rae Woong Park,Sandy Jeong Rhie
出处
期刊:International Journal of Antimicrobial Agents [Elsevier BV]
卷期号:62 (5): 106966-106966 被引量:10
标识
DOI:10.1016/j.ijantimicag.2023.106966
摘要

Prediction of antibiotic non-susceptibility based on patient characteristics and clinical status may support selection of empiric antibiotics for suspected hospital-acquired urinary tract infections (HA-UTIs). Prediction models were developed to predict non-susceptible results of eight antibiotic susceptibility tests ordered for suspected HA-UTI. Eligible patients were those with urine culture and susceptibility test results after 48 hours of admission between 2010–2021. Patient demographics, diagnosis, prescriptions, exposure to multidrug-resistant organisms, transfer history, and a daily calculated antibiogram were used as predictors. Lasso logistic regression (LLR), extreme gradient boosting (XGB), random forest, and stacked ensemble methods were used for development. Parsimonious models were also developed for clinical utility. Discrimination was assessed using the area under the receiver operating characteristic curve (AUROC). In 10 474 suspected HA-UTI cases, the mean age was 62.1 ± 16.2 years and 48.1% were male. Non-susceptibility prediction for ampicillin/sulbactam, cefepime, ciprofloxacin, imipenem, piperacillin/tazobactam, and trimethoprim/sulfamethoxazole performed best using the stacked ensemble (AUROC 76.9, 76.1, 77.0, 80.6, 76.1, and 76.5, respectively). The model for ampicillin performed best with LLR (AUROC 73.4). Extreme gradient boosting only performed best for gentamicin (AUROC 66.9). In the parsimonious models, the LLR yielded the highest AUROC for ampicillin, ampicillin/sulbactam, cefepime, gentamicin, and trimethoprim/sulfamethoxazole (AUROC 70.6, 71.8, 73.0, 65.9, and 73.0, respectively). The model for ciprofloxacin performed best with XGB (AUROC 70.3), while the model for imipenem performed best in the stacked ensemble (AUROC 71.3). A personalised application using the parsimonious models was publicly released. Prediction models for antibiotic non-susceptibility were developed to support empiric antibiotic selection for HA-UTI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助心灵美的白卉采纳,获得10
2秒前
lan完成签到,获得积分10
3秒前
3秒前
3秒前
森先生关注了科研通微信公众号
4秒前
Demon完成签到,获得积分20
4秒前
4秒前
李健应助ZHANG采纳,获得50
4秒前
现代关注了科研通微信公众号
5秒前
chengzhiliu29完成签到,获得积分20
5秒前
JEWEL完成签到,获得积分10
5秒前
6秒前
秀儿发布了新的文献求助10
6秒前
李爱国应助浮生采纳,获得10
7秒前
小蘑菇应助lan采纳,获得10
7秒前
冷艳铁身发布了新的文献求助10
8秒前
8秒前
赵哈哈发布了新的文献求助10
8秒前
Jackylee应助LLLLLJJXX采纳,获得10
9秒前
Ember完成签到 ,获得积分10
9秒前
小肆发布了新的文献求助10
9秒前
9秒前
诚心八宝粥完成签到,获得积分10
10秒前
10秒前
于儒琛发布了新的文献求助10
10秒前
隐形的皮卡丘完成签到,获得积分10
10秒前
123完成签到 ,获得积分10
10秒前
10秒前
chengzhiliu29发布了新的文献求助10
11秒前
散装洋芋发布了新的文献求助10
11秒前
11秒前
在水一方应助诚心孤菱采纳,获得10
11秒前
hbit完成签到,获得积分10
14秒前
顾矜应助九九九采纳,获得10
15秒前
zzzxhhr发布了新的文献求助30
15秒前
Xavier发布了新的文献求助10
15秒前
依依发布了新的文献求助10
16秒前
粗犷的谷秋完成签到,获得积分10
16秒前
畅快新之发布了新的文献求助10
17秒前
树叶有专攻完成签到,获得积分10
17秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241592
求助须知:如何正确求助?哪些是违规求助? 4408299
关于积分的说明 13721568
捐赠科研通 4277372
什么是DOI,文献DOI怎么找? 2347152
邀请新用户注册赠送积分活动 1344193
关于科研通互助平台的介绍 1302357