A machine learning-based choledocholithiasis prediction tool to improve ERCP decision making: a proof-of-concept study

医学 内镜逆行胰胆管造影术 接收机工作特性 模式 机器学习 Boosting(机器学习) 内窥镜检查 危险分层 队列 人工智能 医学物理学 放射科 外科 内科学 胰腺炎 计算机科学 社会科学 社会学
作者
Steven N. Steinway,Bo‐Hao Tang,Brian Caffo,Venkata S. Akshintala,Jeremy Telezing,Aditya Ashok,Ayesha Kamal,Chung Yao Yu,Nitin Jagtap,James Buxbaum,Joseph Elmunzer,Sachin Wani,Mouen A. Khashab
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:56 (03): 165-171 被引量:7
标识
DOI:10.1055/a-2174-0534
摘要

Abstract Background Previous studies demonstrated limited accuracy of existing guidelines for predicting choledocholithiasis, leading to overutilization of endoscopic retrograde cholangiopancreatography (ERCP). More accurate stratification may improve patient selection for ERCP and allow use of lower-risk modalities. Methods A machine learning model was developed using patient information from two published cohort studies that evaluated performance of guidelines in predicting choledocholithiasis. Prediction models were developed using the gradient boosting model (GBM) machine learning method. GBM performance was evaluated using 10-fold cross-validation and area under the receiver operating characteristic curve (AUC). Important predictors of choledocholithiasis were identified based on relative importance in the GBM. Results 1378 patients (mean age 43.3 years; 61.2% female) were included in the GBM and 59.4% had choledocholithiasis. Eight variables were identified as predictors of choledocholithiasis. The GBM had accuracy of 71.5% (SD 2.5%) (AUC 0.79 [SD 0.06]) and performed better than the 2019 American Society for Gastrointestinal Endoscopy (ASGE) guidelines (accuracy 62.4% [SD 2.6%]; AUC 0.63 [SD 0.03]) and European Society of Gastrointestinal Endoscopy (ESGE) guidelines (accuracy 62.8% [SD 2.6%]; AUC 0.67 [SD 0.02]). The GBM correctly categorized 22% of patients directed to unnecessary ERCP by ASGE guidelines, and appropriately recommended as the next management step 48% of ERCPs incorrectly rejected by ESGE guidelines. Conclusions A machine learning-based tool was created, providing real-time, personalized, objective probability of choledocholithiasis and ERCP recommendations. This more accurately directed ERCP use than existing ASGE and ESGE guidelines, and has the potential to reduce morbidity associated with ERCP or missed choledocholithiasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助格格采纳,获得10
刚刚
1秒前
科研通AI6应助小疯采纳,获得10
1秒前
顾矜应助RedPanda采纳,获得10
1秒前
2秒前
3秒前
唐尔曼发布了新的文献求助10
3秒前
小二郎应助Sun采纳,获得10
4秒前
深情安青应助lu采纳,获得10
4秒前
acuter发布了新的文献求助10
4秒前
4秒前
活泼的寄风完成签到,获得积分10
4秒前
感动依霜发布了新的文献求助50
5秒前
6秒前
乔垣结衣应助YuanL采纳,获得10
6秒前
7秒前
7秒前
吞吞完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
陈一发布了新的文献求助20
10秒前
11秒前
11秒前
zzw发布了新的文献求助20
11秒前
11秒前
你为什么不学习完成签到 ,获得积分10
12秒前
zyt发布了新的文献求助10
12秒前
dawnshea应助CC采纳,获得10
12秒前
今后应助jason70采纳,获得10
12秒前
13秒前
111完成签到,获得积分20
14秒前
14秒前
14秒前
wangnn完成签到,获得积分10
14秒前
爱听歌的青筠完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
英姑应助哈哈采纳,获得10
15秒前
果粒橙应助marxing采纳,获得10
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Apiaceae Himalayenses. 2 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4239197
求助须知:如何正确求助?哪些是违规求助? 3772920
关于积分的说明 11848818
捐赠科研通 3428754
什么是DOI,文献DOI怎么找? 1881756
邀请新用户注册赠送积分活动 933920
科研通“疑难数据库(出版商)”最低求助积分说明 840611