A machine learning-based choledocholithiasis prediction tool to improve ERCP decision making: a proof-of-concept study

医学 内镜逆行胰胆管造影术 接收机工作特性 模式 机器学习 Boosting(机器学习) 内窥镜检查 危险分层 队列 人工智能 医学物理学 放射科 外科 内科学 胰腺炎 计算机科学 社会科学 社会学
作者
Steven N. Steinway,Bo‐Hao Tang,Brian Caffo,Venkata S. Akshintala,Jeremy Telezing,Aditya Ashok,Ayesha Kamal,Chung Yao Yu,Nitin Jagtap,James Buxbaum,Joseph Elmunzer,Sachin Wani,Mouen A. Khashab
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:56 (03): 165-171 被引量:7
标识
DOI:10.1055/a-2174-0534
摘要

Abstract Background Previous studies demonstrated limited accuracy of existing guidelines for predicting choledocholithiasis, leading to overutilization of endoscopic retrograde cholangiopancreatography (ERCP). More accurate stratification may improve patient selection for ERCP and allow use of lower-risk modalities. Methods A machine learning model was developed using patient information from two published cohort studies that evaluated performance of guidelines in predicting choledocholithiasis. Prediction models were developed using the gradient boosting model (GBM) machine learning method. GBM performance was evaluated using 10-fold cross-validation and area under the receiver operating characteristic curve (AUC). Important predictors of choledocholithiasis were identified based on relative importance in the GBM. Results 1378 patients (mean age 43.3 years; 61.2% female) were included in the GBM and 59.4% had choledocholithiasis. Eight variables were identified as predictors of choledocholithiasis. The GBM had accuracy of 71.5% (SD 2.5%) (AUC 0.79 [SD 0.06]) and performed better than the 2019 American Society for Gastrointestinal Endoscopy (ASGE) guidelines (accuracy 62.4% [SD 2.6%]; AUC 0.63 [SD 0.03]) and European Society of Gastrointestinal Endoscopy (ESGE) guidelines (accuracy 62.8% [SD 2.6%]; AUC 0.67 [SD 0.02]). The GBM correctly categorized 22% of patients directed to unnecessary ERCP by ASGE guidelines, and appropriately recommended as the next management step 48% of ERCPs incorrectly rejected by ESGE guidelines. Conclusions A machine learning-based tool was created, providing real-time, personalized, objective probability of choledocholithiasis and ERCP recommendations. This more accurately directed ERCP use than existing ASGE and ESGE guidelines, and has the potential to reduce morbidity associated with ERCP or missed choledocholithiasis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助LiYaru采纳,获得10
刚刚
977发布了新的文献求助10
1秒前
大吴克发布了新的文献求助10
1秒前
科研八戒发布了新的文献求助10
1秒前
2秒前
Adfireu发布了新的文献求助10
2秒前
4秒前
5秒前
5秒前
6秒前
6秒前
6秒前
CodeCraft应助朱凌娇采纳,获得10
6秒前
6秒前
7秒前
742发布了新的文献求助10
7秒前
dll完成签到 ,获得积分10
7秒前
renwenbin完成签到,获得积分10
8秒前
羊羊完成签到 ,获得积分10
8秒前
拉长的绮梅完成签到,获得积分10
8秒前
xingyuwuhen007完成签到,获得积分20
8秒前
默存完成签到,获得积分10
9秒前
9秒前
李健应助wind采纳,获得10
9秒前
多喝热水发布了新的文献求助20
9秒前
科研通AI5应助cloud采纳,获得20
10秒前
奶油橘子完成签到,获得积分10
10秒前
NexusExplorer应助雅风采纳,获得10
10秒前
Anna爱学习发布了新的文献求助30
10秒前
yue发布了新的文献求助20
10秒前
思源应助ff采纳,获得10
11秒前
张哈哈发布了新的文献求助10
11秒前
FashionBoy应助EatFish采纳,获得20
12秒前
务实的笑阳完成签到,获得积分10
12秒前
讨厌鬼完成签到,获得积分10
13秒前
13秒前
13秒前
英俊笑容发布了新的文献求助20
13秒前
王王完成签到,获得积分10
14秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786195
求助须知:如何正确求助?哪些是违规求助? 3331852
关于积分的说明 10252592
捐赠科研通 3047153
什么是DOI,文献DOI怎么找? 1672437
邀请新用户注册赠送积分活动 801287
科研通“疑难数据库(出版商)”最低求助积分说明 760140