LACTA: A lightweight and accurate algorithm for cherry tomato detection in unstructured environments

计算机科学 稳健性(进化) 算法 特征提取 人工智能 机器人 精确性和召回率 数据挖掘 机器学习 生物化学 基因 化学
作者
Jin Gao,Junxiong Zhang,Fan Zhang,Junfeng Gao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122073-122073 被引量:23
标识
DOI:10.1016/j.eswa.2023.122073
摘要

Developing cherry tomato detection algorithms for selective harvesting robots faces many challenges due to the influence of various environmental factors such as lighting, water mist, overlap, and occlusion. To this end, we present LACTA, a lightweight and accurate cherry tomato detection algorithm specifically designed for harvesting robot operation in complex environments. Our approach enhances the model's generalization ability and robustness by selectively expanding the original dataset using a combination of offline and online data augmentation strategies. To effectively capture the small target features of cherry tomatoes, we construct an adaptive feature extraction network (AFEN) that focuses on extracting pertinent feature information to enhance the identification ability. Additionally, the proposed cross-layer feature fusion network (CFFN) preserves the model's lightweight nature while obtaining richer feature representations. Finally, the integration of efficient decoupled heads (EDH) further enhances the model's detection performance. Experimental results demonstrate the adaptability and robustness of LACTA, achieving precision, recall, and mAP values of 94 %, 92.5 %, and 97.3 %, respectively. Compared to the original dataset, the offline-online combined data augmentation strategy improves precision, recall, and mAP by 1.6 %, 1.7 %, and 1.1 %, respectively. The AFEN + CFFN network structure significantly reduces computational complexity by 28 % and number of parameters by 72 %. With a compact size of only 2.88 M, the LACTA model can be seamlessly deployed into selective harvesting robots for the automated harvesting of cherry tomatoes in greenhouses. The code is available at https://github.com/ruyounuo/LACTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zc发布了新的文献求助10
刚刚
刚刚
1秒前
中原第一深情完成签到,获得积分10
1秒前
1秒前
善学以致用应助北斗采纳,获得30
2秒前
世界是个大坑完成签到,获得积分10
2秒前
3秒前
4秒前
xiaolu完成签到,获得积分20
4秒前
小豆豆完成签到,获得积分10
4秒前
冷冷子发布了新的文献求助20
4秒前
JiaY完成签到,获得积分10
4秒前
积极香菇发布了新的文献求助10
5秒前
郭丹丹完成签到 ,获得积分20
5秒前
nora应助文艺水风采纳,获得30
5秒前
iiis发布了新的文献求助10
6秒前
ming123ah完成签到,获得积分10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
整齐的涵蕾完成签到,获得积分10
6秒前
6秒前
Hello应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
7秒前
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得100
7秒前
所所应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
Gshwsh发布了新的文献求助10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271196
求助须知:如何正确求助?哪些是违规求助? 4429021
关于积分的说明 13786927
捐赠科研通 4307036
什么是DOI,文献DOI怎么找? 2363433
邀请新用户注册赠送积分活动 1359035
关于科研通互助平台的介绍 1321984