LACTA: A lightweight and accurate algorithm for cherry tomato detection in unstructured environments

计算机科学 稳健性(进化) 算法 特征提取 人工智能 机器人 精确性和召回率 数据挖掘 机器学习 生物化学 化学 基因
作者
Jin Gao,Junxiong Zhang,Fan Zhang,Junfeng Gao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122073-122073 被引量:23
标识
DOI:10.1016/j.eswa.2023.122073
摘要

Developing cherry tomato detection algorithms for selective harvesting robots faces many challenges due to the influence of various environmental factors such as lighting, water mist, overlap, and occlusion. To this end, we present LACTA, a lightweight and accurate cherry tomato detection algorithm specifically designed for harvesting robot operation in complex environments. Our approach enhances the model's generalization ability and robustness by selectively expanding the original dataset using a combination of offline and online data augmentation strategies. To effectively capture the small target features of cherry tomatoes, we construct an adaptive feature extraction network (AFEN) that focuses on extracting pertinent feature information to enhance the identification ability. Additionally, the proposed cross-layer feature fusion network (CFFN) preserves the model's lightweight nature while obtaining richer feature representations. Finally, the integration of efficient decoupled heads (EDH) further enhances the model's detection performance. Experimental results demonstrate the adaptability and robustness of LACTA, achieving precision, recall, and mAP values of 94 %, 92.5 %, and 97.3 %, respectively. Compared to the original dataset, the offline-online combined data augmentation strategy improves precision, recall, and mAP by 1.6 %, 1.7 %, and 1.1 %, respectively. The AFEN + CFFN network structure significantly reduces computational complexity by 28 % and number of parameters by 72 %. With a compact size of only 2.88 M, the LACTA model can be seamlessly deployed into selective harvesting robots for the automated harvesting of cherry tomatoes in greenhouses. The code is available at https://github.com/ruyounuo/LACTA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小卷粉完成签到 ,获得积分10
1秒前
1秒前
3秒前
3秒前
超级凌旋发布了新的文献求助10
4秒前
科目三应助爱学习的子正采纳,获得10
4秒前
搞怪的康发布了新的文献求助10
4秒前
李爱国应助陈欣采纳,获得10
6秒前
平安喜乐发布了新的文献求助10
8秒前
学文艺发布了新的文献求助10
9秒前
张强完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
钟鸿盛Domi发布了新的文献求助10
10秒前
细心小鸭子完成签到,获得积分10
10秒前
11秒前
Ankh完成签到,获得积分10
11秒前
hrj完成签到,获得积分10
12秒前
13秒前
善学以致用应助RigdzinGyal采纳,获得10
13秒前
领导范儿应助超超采纳,获得10
13秒前
hah完成签到,获得积分10
13秒前
14秒前
buxiangshangxue发布了新的文献求助300
14秒前
小熊完成签到,获得积分10
14秒前
yin印完成签到 ,获得积分10
15秒前
15秒前
liu刘发布了新的文献求助10
16秒前
johnny完成签到,获得积分10
18秒前
18秒前
18秒前
求助人员发布了新的文献求助10
19秒前
妙木仙完成签到,获得积分10
20秒前
大模型应助游一采纳,获得10
20秒前
领导范儿应助土豆采纳,获得10
21秒前
研友_VZG7GZ应助摇落月采纳,获得10
21秒前
cbz完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542237
求助须知:如何正确求助?哪些是违规求助? 4628415
关于积分的说明 14608555
捐赠科研通 4569592
什么是DOI,文献DOI怎么找? 2505316
邀请新用户注册赠送积分活动 1482650
关于科研通互助平台的介绍 1454121