IDDF2022-ABS-0068 Targeting tumor-intrinsic N7-methylguanosine tRNA modification inhibits MDSC recruitment and improves anti-PD-1 efficacy

人口 癌症研究 质量细胞仪 化学 CD33 免疫系统 肿瘤微环境 流式细胞术 CD14型 分子生物学 生物 医学 免疫学 表型 生物化学 细胞生物学 基因 环境卫生 干细胞 川地34
作者
Hai-Ning Liu,Zeng Xuezhen,Ren Xuxin,Ming Kuang,Lin Shuibin
标识
DOI:10.1136/gutjnl-2022-iddf.7
摘要

Background

Intrahepatic cholangiocarcinoma (ICC) exhibits a very low response rate to immune checkpoint inhibitors (ICIs) and the underlying mechanism is largely unknown. We investigate the tumor immune microenvironment (TIME) of ICCs and the underlying regulatory mechanisms with the aim of developing a new target to inhibit tumor growth and improve anti-PD-1 efficacy.

Methods

Tumor tissues from ICC patients together with hydrodynamic ICC mouse models were employed to identify the key cell population in TIME of ICCs. Functional analysis and mechanism studies were performed using cell culture, condition knockout mouse model and hydrodynamic transfection ICC model. The efficacy of single or combined therapy with anti-PD-1 antibody, gene knockout and chemical inhibitor were evaluated in vivo.

Results

Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are enriched in advanced ICCs and significantly correlated with N7-methylguanosine (m7G) tRNA methyltransferase METTL1 (IDDF2022-ABS-0068 Figure 1. PMN-MDSCs are significantly increased in advanced ICC and associated with METTL1 expression. (A) The enrichment score of each TIME infiltrating cell in early-stage (n=30) and late-stage (n=29) ICC tissues. The upper and lower ends of boxes represented interquartile range of values. The black dotes represented outliers and the lines in the boxes showed median value. (B) Representative flow cytometry dot plots of CD33+CD11b+HLA-DR- MDSC, CD33+CD11b+HLA-DR-CD15+ PMN-MDSC and CD33+CD11b+HLA-DR-CD14+ M-MDSC within CD45+ cells in human ICC tumor tissues. (C) Percentage of MDSC (left panel), PMN-MDSC (middle panel), and M-MDSC (right panel) in early-stage and late-stage or recurrence tumor infiltrating CD45+ immune cells (n=4). (D) Gene-set enrichment analysis identified metabolism of RNA signature was positive correlated with MDSC infiltration. (E) Correlation between METTL1 expression and MDSC enrichment score in our FAH-SYSU cohort and TCGA cohort). Using diverse in vivo cancer models, we demonstrate the crucial immunomodulator function of METTL1 in regulation of PMN-MDSC accumulation in tumor immune microenvironment (TIME) and ICC progression (IDDF2022-ABS-0068 Figure 2. METTL1-mediated m7G tRNA modification induces PMN-MDSC accumulation in ICC. (A) Representative liver images and statistics of liver weights are shown in Ctrl and cKO mice. (n=10). (B) Percentage and absolute number of PMN-MDSC in the liver of Ctrl and cKO mice tumor infiltrating CD45+ immune cells (n=10). (C) Representative images of Ly6G+ cells in tumors detected by immunohistochemistry (IHC) and statistics of the number of Ly6G+ cells in Ctrl and cKO tumor. (D) Representative liver tumor morphology and statistical analysis of liver weights in oeNC and oeM1 mice (n=6). (E) The percentage and absolute number of PMN-MDSC within CD45+ cells in oeNC and oeM1 mice (n=6). (F) Representative IHC images of Ly6G+ cells and the statistical analysis of the number of Ly6G+ cells in oeNC and oeM1 tumors (n=6)). Mechanistically, CXCL8 in humans and Cxcl5 in mice are key translational targets of METTL1 that facilitate its function in promoting PMN-MDSC accumulation in TIME and ICC progression in vivo (IDDF2022-ABS-0068 Figure 3. PMN-MDSC accumulaton is regulated by the m7G tRNA modification-mediated translation control of CXCL8 in human ICC cell lines. (A) GSEA analysis identified the translation efficiency of chemokine signaling pathway was down-regulated in the METTL1 knockout RBE and HuCCT1 cell lines. (B) Screening strategy showing 20 overlapped genes were affected by METTL1 knockout in RBE and HuCCT1 cell lines. (C) 20 overlapped genes were ranked according to their mRNA m7G related codon frequency. (D) Western blot confirmation of METTL1 overexpression and northwestern blot validation of increased tRNA m7G modification in RBE cell line. (E) qRT-PCR analysis to evaluate the transcription level (left panel) and translation ratio (right panel) of CXCL8 mRNA in oeNC, oeWT and oeMut RBE cell line. (F) Relative mRNA distribution of the CXCL8 in each ribosome fractions were analyzed by qRT-PCR in oeNC, oeWT and oeMut RBE cell line. (G) Protein levels of CXCL8 in the condition medium cultured with oeNC, oeWT or oeMut RBE cell line. (H) Schematic diagram of in vitro MDSC migration assay. (I) In vitro MDSC migration assay in the presence of CXCL8 recombinant proteins in METTL1 knockout conditioned medium or CXCL8 neutralization antibody in overexpression wild-type METTL1 conditioned medium). Co-blockade of METTL1 and its downstream chemokine pathway enhances the anti-PD-1 efficacy in ICC pre-clinical mouse models (IDDF2022-ABS-0068 Figure 4. METTL1 depletion and CXCR2 inhibition enhances PD-1 blockade efficacy to eradicate ICC.(A) Representative gross images of 7 groups of livers. + means treated with anti-PD-1 antibody or SB225002, while – means treated with anti-IgG antibody or 2% DMSO. (B) Liver weights in 7 groups of mice (n=5). (C) Percentage of PMM-MDSC in mice tumor infiltrating CD45+ immune cells (n=5). (D) A graphical summary. Tumor-intrinsic METTL1 regulate the translation of CXCL8/Cxcl5 to recruit PMN-MDSC which further lead to anti-PD-1 resistance by inhibiting the CD4+ T cell expansion and the antitumor activity of CD4+ and CD8+ T cells. Targeting METTL1 and CXCR2 to block the migration of PMN-MDSC could recover the proliferation and antitumor function of CD4+ and CD8+ T cells, which further improve the efficacy of anti-PD-1 therapy).

Conclusions

Our data uncover novel mechanisms underlying chemokine regulation and TIME shaping at the layer of mRNA translation level and provide new insights for the development of efficient cancer immunotherapy strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YUUNEEQUE完成签到,获得积分10
1秒前
chen完成签到,获得积分10
1秒前
Landau发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
疯狂的迪子完成签到 ,获得积分10
3秒前
pluto应助Ryan采纳,获得50
3秒前
chen发布了新的文献求助10
4秒前
开放的初曼完成签到,获得积分20
6秒前
大憨憨完成签到 ,获得积分10
6秒前
鞘皮发布了新的文献求助10
7秒前
CCY777发布了新的文献求助10
7秒前
范月月完成签到 ,获得积分10
7秒前
快乐小狗完成签到 ,获得积分10
8秒前
啵妞完成签到 ,获得积分10
8秒前
dyd发布了新的文献求助30
8秒前
谢傲安发布了新的文献求助10
8秒前
qqy完成签到,获得积分10
11秒前
gsj完成签到 ,获得积分10
12秒前
小天狼星完成签到,获得积分10
12秒前
13秒前
科研通AI2S应助Leyan采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
16秒前
谢傲安完成签到,获得积分10
21秒前
莫妮卡完成签到,获得积分10
22秒前
Kora完成签到,获得积分10
22秒前
25秒前
打打应助人衣采纳,获得10
25秒前
26秒前
为你钟情完成签到 ,获得积分10
26秒前
xiaopan9083完成签到,获得积分10
28秒前
方圆学术完成签到,获得积分10
30秒前
dyd发布了新的文献求助30
31秒前
sduweiyu完成签到 ,获得积分10
31秒前
qqy发布了新的文献求助10
32秒前
火星上小土豆完成签到 ,获得积分10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326623
关于积分的说明 10227813
捐赠科研通 3041744
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751