摘要
RESUME
La maladie de Kawasaki est une pathologie pediatrique provoquant un dereglement immunitaire.
Elle entra^ne une in
ammation des vaisseaux sanguins de moyen et grand calibres.
Chez environ 30% des patients non traites apparaissent une in
ammation des arteres coronaires,
qui se manifeste par l'apparition d'anevrismes et peut mener, par la suite, a un
deces par infarctus du myocarde. Ces anevrismes sont diagnostiques par un examen angiographique
en injectant dans les arteres du patient un produit de contraste reactif aux rayons
X. Les anevrismes sont alors observables sur les dierentes sequences d'images 2D acquises
a dierents angles de vue a l'aide d'un C-arm biplan. Ces images permettent une evaluation
qualitative, mais ne sont pas susantes pour pouvoir attester correctement de la geometrie
3D, parfois complexe, des anevrismes. Ceci oblige les medecins a multiplier le nombre de vues
angiographiques, ce qui entra^ne sur-irradiation du patient aux rayons X. Une solution que
nous proposons dans ce projet est d'eectuer une reconstruction 3D des arteres coronaires
a l'aide des images angiographiques. L'objectif de cet outil est d'^etre rapide et automatique
an de pouvoir ^etre utilise dans le cadre d'un examen angiographique. L'acquisition d'une
nouvelle image ne se fera que si la reconstruction actuelle est insusante pour le medecin
et necessite plus d'informations, permettant ainsi de rationaliser le nombre de vues au minimum
necessaire. Les algorithmes de stereoscopie, couramment utilises pour la reconstruction
3D des arteres coronaires, ne permettent pas une reconstruction d'un volume en simpliant
la plupart du temps l'artere a sa ligne centrale et rayons. De plus, le temps de mise en
correspondance entre les images ne permet pas une utilisation iterative au cours de l'examen
angiographique. An d'obtenir une reconstruction 3D volumique des arteres coronaires,
nous avons choisi de nous pencher sur la technique de Forme a partir de la silhouette. Cette
methode permet a partir de silhouettes d'un objet placees dans les dierentes vues de reconstruire
cet objet volumiquement. Cette technique presente l'avantage de ne pas ^etre limitee
dans le nombre de vues pouvant ^etre utilise et permet d'obtenir la forme de l'objet, ce qui se
pr^ete tres bien a notre desir de visualiser la geometrie 3D de l'anevrisme. Nous appliquons
donc dans ce memoire cette methode a des silhouettes d'arteres coronaires, obtenues apres
segmentation de ces m^emes arteres. La reconstruction par voxels de Forme a partir de la silhouette
presente l'avantage d'^etre rapide et automatique (pas de mise en correspondance des
images a eectuer). Ainsi, la reconstruction par voxels consiste a tester chaque voxel d'une
grille 3D avec la condition suivante : si la projection dans les plans detecteurs du centre du
voxel appartient a l'interieur d'une silhouette pour chaque vue alors ce voxel appartient a
la reconstruction. Dans un premier temps, nous testons la methode Forme a partir de la----------ABSTRACT
Kawasaki disease is an immune dysfunction that typically aects children under the age of
ve and causes in
ammation of large and medium sized vessels. Kawasaki disease may cause
the in
ammation of coronary arteries that lead to aneurysms and heart attacks. Aneurysms
can be observed by an angiographic examination. A contrast agent is injected into the patient's
arteries through a catheter and serves to accentuate the arteries when radiographs are
taken. Several image sequences of the arteries from dierent viewpoints are taken by means
of a biplanar C-arm. These images allow a qualitative evaluation but, due to the high degree
of overlapping structures that occurs in the 2D X-ray images, an aneurysm's often complex
3D geometry cannot be usually assessed correctly. As a result, the clinician must take several
image series from dierent viewpoints, which leads to patient over-irradiation when unnecessary
views are acquired. The solution proposed in this work is to create a 3D reconstruction
of the coronary arteries from the angiographic images. The reconstruction method must
be fast and automatic in order to be used during an angiographic examination. Also, we
should be able to integrate newly acquired views to the existing 3D reconstruction, and new
images should be taken only if the current reconstruction is not yet sucient for the physician,
thereby restricting the number of view to the minimum required. Furthermore, the 3D
reconstruction made the
y should provide hints as to which new viewing angle to use.
Such an iterative approach could also contribute toward reducing the number of angiographic
views. The current state of the art in 3D reconstruction of coronary arteries invariably exploits
stereoscopic vision algorithms. These approaches generally do not yield volume-based
reconstructions since they simplify the artery to a centerline and radii, which is too coarse
to represent the geometry of an aneurysm. Moreover, the stereo matching step is too time
consuming to be integrated in an iterative procedure during an angiographic examination.
To obtain a volume-based 3D reconstruction of the coronary arteries, we decided to focus on
the technique called Shape from Silhouette (SFS). This method generates the volume-based
reconstruction of an object from its silhouettes as seen from dierent orientations. The advantages
are that an unlimited number of views can be used and that the reconstructed shape
is suitable for our application, i.e. visualizing the geometry of the aneurysm. In addition,
the SFS approach is fast and automatic (no stereo matching between images to perform).
We apply this method on the silhouettes of coronary arteries, which are rst segmented from
the angiographic images. The 3D reconstruction then consists in testing each voxel in a 3D
grid under the following condition: if the projection of the centre of the voxel on the detector
plane lies within the silhouette for each view, then the given voxel belongs to the reconstruc