亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development strategies for foamed cement paste

水泥 业务 材料科学 法律工程学 复合材料 工程类
作者
John Pott,Ludger Lohaus
出处
期刊:CRC Press eBooks [Informa]
卷期号:: 114-114 被引量:1
标识
DOI:10.1201/9781439828410.ch77
摘要

For several decades numerous research projects dealt with foamed concrete. Although foamed cement-bound materials have very useful properties, for example low density and low thermal conductivity, they are not often used as construction material, because predefined properties are difficult to attain accurately. Therefore the intention of this research work is the unerring production of cement-bound foams. Based on technical and scientific basics of foam technology and concrete technology, special attention is paid to the rheological behaviour, mixture stability and the hardening process of cement paste as the dominating factors for its optimisation as liquid phase for foamed cement paste. From these considerations a comprehensive model for stable cement-bound foams is developed. Within this model the complex interaction of different components of cement pastes and their influences during the phases of production, workmanship and hardening are described. According to the before mentioned aspects, a stable composition for a foamed cement paste was developed. Modifications of this composition have been tested, in order to prove the reliability of the theoretical model. Figure 1. Different types of foam, characterized by the gas content e, based on KERN 2002. fluid. If the fluid-film between two bubbles thins out so far that the tensile stresses corresponding to the internal pressure can no longer be absorbed, the fluid film breaks and the bubbles affiliate. This is called coalescence. Provided that the air entrainment works as well as possible, the maximum air content of the foam depends on geometrical aspects, like bubble diameter distribution and the minimum thickness of the fluid films between the bubbles. For this a higher viscosity of the fluid would be better. Nevertheless the viscosity has to be limited, because a high viscosity interferes with the air entrainment and the dispersion of the air in the fluid. 3 REQUIREMENTS OF CEMENT PASTE AS LIQUID PHASE OF FOAMS As aforementioned in the basics, there are a lot of contradictory requirements for cement pastes to be foamed. Therefore two phases can be distinguished: • Production of cement paste, foaming and processing • Foam stability until hardening During the first phase, method and requirements of air-entraining as well as the workability are the determining factors for the specification of the cement paste and its properties. To enable the entraining of air into the cement paste with an acceptable effort relating to energy and machines, relatively low viscosities are necessary. Furthermore the inserted air has to be well dispersed and covered in strong bubbles. Therefore a quick stabilization of the interface between air and cement paste is essential. This can be managed by surfactants (air-entraining admixture or foaming agent) in high dosage. But important for the stabilization of the interface is also its geometrical form. To absorb tensile stresses, the interface has to be as plain as possible. This can be achieved by a higher water content above the saturation point. Under these conditions the interstices between the solid particles at the interface can be filled. This filling of interstices can be supported by the addition of very fine particles like silica-fume. They can be placed in the space between the larger (cement) particles and reduce the volume which has to be filled with water (Fig. 4). In the second phase the focus is on foam stability. It is important to reduce drainage. Therefore the separation of air and cement paste by bubble up or flow out has to be reduced to a minimum. In spite of the higher water content to allow the foaming process, a high viscosity is necessary for the foam stability between processing and hardening. In order to handle this contradiction, the cement paste has to be described as a 2-phase-system with a liquid and a solid phase. The motion of solid particles always causes a motion of the circumfluent liquid phase. Thus the drainage can be effectively reduced by controlling the mobility of the water. In tests this could be achieved by using organic stabilizers, polycarboxylic ethers (superplasticizers) and very fine particles like silica fume. Characterizing the situation inside a water filled interstice between several cement particles the respective mode of operation can be easily described (see Figs. 5 a-d). Within the initial situation only a small proportion of the water is bound to the surfaces of the cement particles. The predominant proportion of the water can move free and flow out of the interstice under the influence of gravitation. With the addition of polycarboxylic ethers (PCE) much more water can Figure 2. Schematic diagram of a bubble. Figure 3. Schematic diagram of drainage and coalescence. Figure 4. Optimization of the bubble surface using higher water content and silica fume. be bound to the solid particles. The molecules of the PCE contact the particles with their backbone and adsorb water molecules at their side chains. With this effect the film of bound water around the particles becomes thicker, the proportion of bound water increases and the remaining cross-section for the flow of unbound water decreases. The back pressure rises. A similar effect can be achieved by the addition of very fine particles. Due to their immense largeness of surface they can bind a lot of water and they downsize the remaining cross-section for waterflow, too. Another possibility to bind the water is the use of organic stabilizers. These are large organic molecules. They can adsorb a lot of water molecules. These emerging molecule packages are more inert and immobile. If their long molecule chains intertwine they can even evolve into a sort of netstructure, which limits the mobility of both the bound and the free water molecules. As a result of all these three effects the drainage can not be stopped completely, but it can be significantly slowed down. This is the basis for a foamed cement paste being stable until hardening with minimal symptoms of decline. The before mentioned ideas are combined and illustrated in Figure 6. Figure 6. Model of the influences of different components of cement paste on foam processing and foam stability. Figure 5. Options to control the drainage. 4 EXPERIMENTS AND THEIR RESULTS Within the experimental research program preliminary tests were used to develop a robust basic recipe for foamed cement pastes, based on the described theoretical ideas. In a parametric study more then 150 variants of this recipe were tested to examine the influence of different types of cement, admixtures, additives and different dosages of these substances. Due to the allowed extension of this paper it is not possible to show all the results in detail. They can be looked up at POTT 2006. The diagram in Figure 7 shows exemplarily the influence of different organic stabilizers and their dosage on the foam stability. It becomes apparent that both type and dosage of the organic stabilizer decide about the foam stability. It is obvious that the dependency is not linear. There is a material related marginal dosage which is necessary to keep the foam stable. The influence on the density of the fresh and hardened (stable) foamed cement pastes is small. This sort of analysis does not detect changes of the pore structure inside the foam. They were reviewed by means of fracture surfaces. It has also been demonstrated that the surface of robust bubbles in fresh foamed cement paste is always made up of a closed fluid film. Pictures of the inner side of pores in hardened foamed cement paste were made with a scanning electron micrograph (SEM). These pictures show platy crystal structures all over the surface of the pore (Fig. 8). With the help of energy dispersive X-ray analysis a huge amount of Ca-atoms and nearly no Si-atoms could be detected within these platy crystals. This indicates a closed film of calcium hydroxide solution on the inner surface of the bubbles. Solid particles like cement or silica fume are not integrated in the surface structure between cement paste and air. 5 SUMMARY The paper at hand provides an insight into a wide research project for the production of cement-bound foams (see POTT 2006). Some substantial results are described. With the help of optimized recipes for cement pastes it is possible to froth them up and to keep the foam stable until it is hardened. Based on the basics of foam technology and concrete technology some principals for the production of cementbound foams were derived and experimentally verified: • Foamed cement pastes should be spheric foams to be robust enough to resist usual effects from processing and while hardening • The production of cement-bound foams requires relatively high contents of water to allow plane interfaces between cement paste and air (bubble) • The water in the fresh cement paste should be bound and made immobile. This can be achieved by using very fine particles, organic stabilizers and polycarboxylic ethers (superplasticizers) to minimize the drainage and keep the foam stable until hardening With these results the further development of foamed cement-bound building materials for different fields of application will be possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡罗特完成签到 ,获得积分10
13秒前
34秒前
研友_892kOL发布了新的文献求助10
38秒前
礼礼完成签到 ,获得积分10
1分钟前
1分钟前
传奇3应助成就的笑翠采纳,获得10
1分钟前
xiaa0618完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
无限的千凝完成签到 ,获得积分10
2分钟前
博ge完成签到 ,获得积分10
2分钟前
苑阿宇完成签到 ,获得积分10
2分钟前
科研通AI2S应助成就的笑翠采纳,获得10
2分钟前
2分钟前
jackychen36完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
深情安青应助成就的笑翠采纳,获得10
3分钟前
Hyphen发布了新的文献求助10
3分钟前
3分钟前
3分钟前
顾矜应助成就的笑翠采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得20
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
ylyao完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
Jhon_323发布了新的文献求助30
5分钟前
33发布了新的文献求助10
5分钟前
umesh完成签到,获得积分10
5分钟前
Noob_saibot完成签到,获得积分10
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124484
求助须知:如何正确求助?哪些是违规求助? 3662388
关于积分的说明 11590322
捐赠科研通 3362598
什么是DOI,文献DOI怎么找? 1847697
邀请新用户注册赠送积分活动 912036
科研通“疑难数据库(出版商)”最低求助积分说明 827849