随机梯度下降算法
计算机科学
比例(比率)
随机优化
梯度下降
集合(抽象数据类型)
在线机器学习
背景(考古学)
样品(材料)
人工智能
算法
数学优化
机器学习
数学
主动学习(机器学习)
人工神经网络
古生物学
物理
生物
化学
量子力学
程序设计语言
色谱法
标识
DOI:10.1007/978-3-7908-2604-3_16
摘要
During the last decade, the data sizes have grown faster than the speed of processors. In this context, the capabilities of statistical machine learning methods is limited by the computing time rather than the sample size. A more precise analysis uncovers qualitatively different tradeoffs for the case of small-scale and large-scale learning problems. The large-scale case involves the computational complexity of the underlying optimization algorithm in non-trivial ways. Unlikely optimization algorithms such as stochastic gradient descent show amazing performance for large-scale problems. In particular, second order stochastic gradient and averaged stochastic gradient are asymptotically efficient after a single pass on the training set.
科研通智能强力驱动
Strongly Powered by AbleSci AI