已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Novel Techniques to Reduce Search Space in Periodic-Frequent Pattern Mining

计算机科学 修剪 可扩展性 数据挖掘 过程(计算) 模式搜索 贪婪算法 模式匹配 模式识别(心理学) 算法 人工智能 数据库 农学 生物 操作系统
作者
R. Uday Kiran,Masaru Kitsuregawa
出处
期刊:Lecture Notes in Computer Science 卷期号:: 377-391 被引量:28
标识
DOI:10.1007/978-3-319-05813-9_25
摘要

Periodic-frequent patterns are an important class of regularities that exist in a transactional database. Informally, a frequent pattern is said to be periodic-frequent if it appears at a regular interval specified by the user (i.e., periodically) in a database. A pattern-growth algorithm, called PFP-growth, has been proposed in the literature to discover the patterns. This algorithm constructs a tid-list for a pattern and performs a complete search on the tid-list to determine whether the corresponding pattern is a periodic-frequent or a non-periodic-frequent pattern. In very large databases, the tid-list of a pattern can be very long. As a result, the task of performing a complete search over a pattern’s tid-list can make the pattern mining a computationally expensive process. In this paper, we have made an effort to reduce the computational cost of mining the patterns. In particular, we apply greedy search on a pattern’s tid-list to determine the periodic interestingness of a pattern. The usage of greedy search facilitate us to prune the non-periodic-frequent patterns with a sub-optimal solution, while finds the periodic-frequent patterns with the global optimal solution. Thus, reducing the computational cost of mining the patterns without missing any knowledge pertaining to the periodic-frequent patterns. We introduce two novel pruning techniques, and extend them to improve the performance of PFP-growth. We call the algorithm as PFP-growth++. Experimental results show that PFP-growth++ is runtime efficient and highly scalable as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乐乐应助赵晓雅采纳,获得30
2秒前
jia发布了新的文献求助10
2秒前
飞天小女警应助梦白鸽采纳,获得20
3秒前
4秒前
5秒前
隐形曼青应助坦率的怡采纳,获得30
5秒前
qy完成签到,获得积分10
5秒前
李白完成签到,获得积分10
5秒前
科研通AI2S应助略略略采纳,获得10
6秒前
7秒前
床头经济学完成签到,获得积分10
7秒前
春晓完成签到,获得积分10
8秒前
丘比特应助王王采纳,获得10
9秒前
9秒前
顾矜应助jia采纳,获得10
9秒前
10秒前
小白又鹏发布了新的文献求助10
10秒前
华仔应助留胡子的西牛采纳,获得10
10秒前
春晓发布了新的文献求助10
11秒前
12秒前
七米日光完成签到 ,获得积分10
13秒前
刘球球发布了新的文献求助10
15秒前
15秒前
满意凡桃发布了新的文献求助10
17秒前
wanci应助顺利毕业采纳,获得10
17秒前
18秒前
快乐银耳汤完成签到,获得积分10
19秒前
陈展峰发布了新的文献求助10
20秒前
20秒前
传奇3应助科研通管家采纳,获得50
20秒前
研友_VZG7GZ应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
竹筏过海应助科研通管家采纳,获得30
20秒前
Hello应助123采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
21秒前
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792198
求助须知:如何正确求助?哪些是违规求助? 3336436
关于积分的说明 10281070
捐赠科研通 3053210
什么是DOI,文献DOI怎么找? 1675507
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761429