亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Transcriptomic Signature for Risk‐Stratification and Recurrence Prediction in Intrahepatic Cholangiocarcinoma

肿瘤科 内科学 肝内胆管癌 医学 队列 危险系数 转录组 基因签名 置信区间 比例危险模型 生物信息学 生物 基因 基因表达 遗传学
作者
Yuma Wada,Mitsuo Shimada,Kensuke Yamamura,Takeo Toshima,Jasjit K. Banwait,Yuji Morine,Tetsuya Ikemoto,Yu Saito,Hideo Baba,Masaki Mori,Ajay Goel
出处
期刊:Hepatology [Wiley]
卷期号:74 (3): 1371-1383 被引量:17
标识
DOI:10.1002/hep.31803
摘要

Background and Aims Tumor recurrence is frequent even in intrahepatic cholangiocarcinoma (ICC), and improved strategies are needed to identify patients at highest risk for such recurrence. We performed genome‐wide expression profile analyses to discover and validate a gene signature associated with recurrence in patients with ICC. Approach and Results For biomarker discovery, we analyzed genome‐wide transcriptomic profiling in ICC tumors from two public data sets: The Cancer Genome Atlas (n = 27) and GSE107943 (n = 28). We identified an eight‐gene panel ( BIRC5 [baculoviral IAP repeat containing 5], CDC20 [cell division cycle 20], CDH2 [cadherin 2], CENPW [centromere protein W], JPH1 [junctophilin 1], MAD2L1 [mitotic arrest deficient 2 like 1], NEIL3 [Nei like DNA glycosylase 3], and POC1A [POC1 centriolar protein A]) that robustly identified patients with recurrence in the discovery (AUC = 0.92) and in silico validation cohorts (AUC = 0.91). We next analyzed 241 specimens from patients with ICC (training cohort, n = 64; validation cohort, n = 177), followed by Cox proportional hazard regression analysis, to develop an integrated transcriptomic panel and establish a risk‐stratification model for recurrence in ICC. We subsequently trained this transcriptomic panel in a clinical cohort (AUC = 0.89; 95% confidence interval [CI] = 0.79‐0.95), followed by evaluating its performance in an independent validation cohort (AUC = 0.86; 95% CI = 0.80‐0.90). By combining our transcriptomic panel with various clinicopathologic features, we established a risk‐stratification model that was significantly superior for the identification of recurrence (AUC = 0.89; univariate HR = 6.08, 95% CI = 3.55‐10.41, P < 0.01; and multivariate HR = 3.49, 95% CI = 1.81‐6.71, P < 0.01). The risk‐stratification model identified potential recurrence in 85% of high‐risk patients and nonrecurrence in 76% of low‐risk patients, which is dramatically superior to currently used pathological features. Conclusions We report a transcriptomic signature for risk‐stratification and recurrence prediction that is superior to currently used clinicopathological features in patients with ICC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
夏虫语冰发布了新的文献求助10
1秒前
iDong完成签到 ,获得积分10
3秒前
3秒前
4秒前
唠叨的妙梦完成签到,获得积分10
4秒前
Ava应助米团采纳,获得10
5秒前
6秒前
崇林同学完成签到,获得积分10
8秒前
77发布了新的文献求助10
9秒前
薰衣草完成签到,获得积分10
9秒前
优美翠丝发布了新的文献求助10
14秒前
Evaporate完成签到,获得积分10
21秒前
充电宝应助优美翠丝采纳,获得10
22秒前
Lee完成签到 ,获得积分10
25秒前
27秒前
共享精神应助qiii采纳,获得10
27秒前
传奇3应助灵巧的大开采纳,获得10
28秒前
Yini应助斯文的随阴采纳,获得50
31秒前
科目三应助wqwweqwe采纳,获得10
33秒前
hyd1640完成签到,获得积分10
34秒前
34秒前
34秒前
昂帕帕斯完成签到,获得积分10
37秒前
39秒前
加油杨完成签到 ,获得积分10
40秒前
40秒前
三四月发布了新的文献求助10
40秒前
黄思月完成签到,获得积分10
43秒前
平常听枫发布了新的文献求助10
44秒前
斯文的随阴给斯文的随阴的求助进行了留言
44秒前
46秒前
77完成签到,获得积分10
46秒前
江水边完成签到 ,获得积分10
47秒前
黄思月发布了新的文献求助10
47秒前
51秒前
impending完成签到,获得积分10
51秒前
51秒前
qiii发布了新的文献求助10
55秒前
tzjz_zrz完成签到,获得积分10
55秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493637
求助须知:如何正确求助?哪些是违规求助? 4591684
关于积分的说明 14434378
捐赠科研通 4524067
什么是DOI,文献DOI怎么找? 2478597
邀请新用户注册赠送积分活动 1463596
关于科研通互助平台的介绍 1436439