同质结
响应度
光电探测器
材料科学
兴奋剂
整改
暗电流
量子隧道
光电子学
光电二极管
电压
电气工程
工程类
作者
Fang Zhong,Jiafu Ye,Ting He,Lili Zhang,Zhen Wang,Qing Li,Bo Han,Peng Wang,Peisong Wu,Yiye Yu,Jiaxiang Guo,Zhenhan Zhang,Meng Peng,Tengfei Xu,Xun Ge,Yang Wang,Hailu Wang,Muhammad Zubair,Xiaohao Zhou,Peng Gao
出处
期刊:Small
[Wiley]
日期:2021-10-13
卷期号:17 (47)
被引量:34
标识
DOI:10.1002/smll.202102855
摘要
2D materials, of which the carrier type and concentration are easily tuned, show tremendous superiority in electronic and optoelectronic applications. However, the achievements are still quite far away from practical applications. Much more effort should be made to further improve their performance. Here, p-type MoSe2 is successfully achieved via substitutional doping of Ta atoms, which is confirmed experimentally and theoretically, and outstanding homojunction photodetectors and inverters are fabricated. MoSe2 p-n homojunction device with a low reverse current (300 pA) exhibits a high rectification ratio (104 ). The analysis of dark current reveals the domination of the Shockley-Read-Hall (SRH) and band-to-band tunneling (BTB) current. The homojunction photodetector exhibits a large open-circuit voltage (0.68 V) and short-circuit currents (1 µA), which is suitable for micro-solar cells. Furthermore, it possesses outstanding responsivity (0.28 A W-1 ), large external quantum efficiency (42%), and a high signal-to-noise ratio (≈107 ). Benefiting from the continuous energy band of homojunction, the response speed reaches up to 20 µs. Besides, the Ta-doped MoSe2 inverter exhibits a high voltage gain (34) and low power consumption (127 nW). This work lays a foundation for the practical application of 2D material devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI