Sample size re‐estimation in clinical trials

样本量测定 统计 临时的 I类和II类错误 统计能力 估计 计量经济学 样品(材料) 区间估计 计算机科学 差异(会计) 统计假设检验 置信区间 数学 经济 会计 考古 化学 管理 色谱法 历史
作者
Peijin Wang,Shein‐Chung Chow
出处
期刊:Statistics in Medicine [Wiley]
卷期号:40 (27): 6133-6149 被引量:8
标识
DOI:10.1002/sim.9175
摘要

In clinical trials, sample size re-estimation is often conducted at interim. The purpose is to determine whether the study will achieve study objectives if the observed treatment effect at interim preserves till end of the study. A traditional approach is to conduct a conditional power analysis for sample size only based on observed treatment effect. This approach, however, does not take into consideration the variabilities of (i) the observed (estimate) treatment effect and (ii) the observed (estimate) variability associated with the treatment effect. Thus, the resultant re-estimated sample sizes may not be robust and hence may not be reliable. In this article, a couple of methods are proposed, namely, adjusted effect size (AES) approach and iterated expectation/variance (IEV) approach, which can account for the variability associated with the observed responses at interim. The proposed methods provide interval estimates of sample size required for the intended trial, which is useful for making critical go/no go decision. Statistical properties of the proposed methods are evaluated in terms of controlling of type I error rate and statistical power. The results show that traditional approach performs poorly in controlling type I error inflation, whereas IEV approach has the best performance in most cases. Additionally, all re-estimation approaches can keep the statistical power over 80 % ; especially, IEV approach's statistical power, using adjusted significance level, is over 95 % . However, IEV approach may lead to a greater increment in sample size when detecting a smaller effect size. In general, IEV approach is effective when effect size is large; otherwise, AES approach is more suitable for controlling type I error rate and keep power over 80 % with a more reasonable re-estimated sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪山飞龙发布了新的文献求助10
1秒前
安详苠发布了新的文献求助20
1秒前
茶颜完成签到,获得积分10
1秒前
忧郁如柏完成签到,获得积分10
2秒前
乐乐应助激情的不弱采纳,获得10
3秒前
加油应助肖旻采纳,获得10
4秒前
桐桐应助luoluo采纳,获得10
5秒前
5秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
脑洞疼应助猪猪猪采纳,获得10
7秒前
方yc完成签到,获得积分10
7秒前
zhong完成签到 ,获得积分10
9秒前
深情安青应助反方向的枫采纳,获得10
9秒前
9秒前
天天快乐应助霸气采文采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
风中的断缘完成签到,获得积分10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
Akim应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
SciGPT应助Yochamme采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
在水一方应助嗡嗡嗡采纳,获得10
11秒前
852应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785906
求助须知:如何正确求助?哪些是违规求助? 5691004
关于积分的说明 15468779
捐赠科研通 4914961
什么是DOI,文献DOI怎么找? 2645485
邀请新用户注册赠送积分活动 1593228
关于科研通互助平台的介绍 1547539