清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Selective identification and localization of indolent and aggressive prostate cancers via CorrSigNIA: an MRI-pathology correlation and deep learning framework

前列腺切除术 前列腺癌 医学 前列腺 磁共振成像 活检 放射科 组织病理学 癌症 病理 内科学
作者
Indrani Bhattacharya,Arun Seetharaman,Christian A. Kunder,Wei Shao,Leo C. Chen,Simon John Christoph Soerensen,Jeffrey B. Wang,Nikola C. Teslovich,Richard E. Fan,Pejman Ghanouni,James D. Brooks,Geoffrey A. Sonn,Mirabela Rusu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:75: 102288-102288 被引量:44
标识
DOI:10.1016/j.media.2021.102288
摘要

Automated methods for detecting prostate cancer and distinguishing indolent from aggressive disease on Magnetic Resonance Imaging (MRI) could assist in early diagnosis and treatment planning. Existing automated methods of prostate cancer detection mostly rely on ground truth labels with limited accuracy, ignore disease pathology characteristics observed on resected tissue, and cannot selectively identify aggressive (Gleason Pattern≥4) and indolent (Gleason Pattern=3) cancers when they co-exist in mixed lesions. In this paper, we present a radiology-pathology fusion approach, CorrSigNIA, for the selective identification and localization of indolent and aggressive prostate cancer on MRI. CorrSigNIA uses registered MRI and whole-mount histopathology images from radical prostatectomy patients to derive accurate ground truth labels and learn correlated features between radiology and pathology images. These correlated features are then used in a convolutional neural network architecture to detect and localize normal tissue, indolent cancer, and aggressive cancer on prostate MRI. CorrSigNIA was trained and validated on a dataset of 98 men, including 74 men that underwent radical prostatectomy and 24 men with normal prostate MRI. CorrSigNIA was tested on three independent test sets including 55 men that underwent radical prostatectomy, 275 men that underwent targeted biopsies, and 15 men with normal prostate MRI. CorrSigNIA achieved an accuracy of 80% in distinguishing between men with and without cancer, a lesion-level ROC-AUC of 0.81±0.31 in detecting cancers in both radical prostatectomy and biopsy cohort patients, and lesion-levels ROC-AUCs of 0.82±0.31 and 0.86±0.26 in detecting clinically significant cancers in radical prostatectomy and biopsy cohort patients respectively. CorrSigNIA consistently outperformed other methods across different evaluation metrics and cohorts. In clinical settings, CorrSigNIA may be used in prostate cancer detection as well as in selective identification of indolent and aggressive components of prostate cancer, thereby improving prostate cancer care by helping guide targeted biopsies, reducing unnecessary biopsies, and selecting and planning treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷皮卡丘完成签到 ,获得积分10
10秒前
Qian完成签到 ,获得积分10
15秒前
科研通AI5应助麻瓜采纳,获得10
16秒前
赘婿应助科研通管家采纳,获得10
34秒前
科研通AI5应助小花的公主采纳,获得10
47秒前
斯文败类应助zzz采纳,获得10
49秒前
大水完成签到 ,获得积分10
53秒前
tlh完成签到 ,获得积分10
55秒前
1分钟前
gincle完成签到 ,获得积分10
1分钟前
666发布了新的文献求助100
1分钟前
1分钟前
优秀的尔风完成签到,获得积分10
1分钟前
zzz发布了新的文献求助10
1分钟前
星星的金子完成签到 ,获得积分10
1分钟前
心静自然好完成签到 ,获得积分10
2分钟前
nick完成签到,获得积分10
2分钟前
2分钟前
tomf完成签到,获得积分10
2分钟前
2分钟前
可爱觅松完成签到 ,获得积分10
2分钟前
allrubbish完成签到,获得积分10
3分钟前
yurunxintian完成签到,获得积分10
3分钟前
曾经不言完成签到 ,获得积分10
3分钟前
yujie完成签到 ,获得积分10
3分钟前
梦溪完成签到 ,获得积分10
3分钟前
袁雪蓓完成签到 ,获得积分10
3分钟前
无限晓蓝完成签到 ,获得积分10
3分钟前
zzz完成签到,获得积分10
3分钟前
3分钟前
zhubin完成签到 ,获得积分10
3分钟前
future完成签到 ,获得积分10
3分钟前
CherylZhao完成签到,获得积分10
3分钟前
Arthur Zhu发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
连冷安完成签到,获得积分10
4分钟前
Shawn完成签到 ,获得积分10
4分钟前
LouieHuang完成签到,获得积分10
4分钟前
Raul完成签到 ,获得积分10
5分钟前
蒲蒲完成签到 ,获得积分10
5分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847821
求助须知:如何正确求助?哪些是违规求助? 3390526
关于积分的说明 10561669
捐赠科研通 3110906
什么是DOI,文献DOI怎么找? 1714585
邀请新用户注册赠送积分活动 825289
科研通“疑难数据库(出版商)”最低求助积分说明 775467