HFRU-Net: High-Level Feature Fusion and Recalibration UNet for Automatic Liver and Tumor Segmentation in CT Images

计算机科学 人工智能 分割 特征(语言学) 棱锥(几何) 卷积神经网络 模式识别(心理学) 深度学习 医学影像学 肝肿瘤 计算机视觉 医学 肝细胞癌 癌症研究 哲学 物理 光学 语言学
作者
Devidas T. Kushnure,Sanjay N. Talbar
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:213: 106501-106501 被引量:50
标识
DOI:10.1016/j.cmpb.2021.106501
摘要

Automatic liver and tumor segmentation are essential steps to take decisive action in hepatic disease detection, deciding therapeutic planning, and post-treatment assessment. The computed tomography (CT) scan has become the choice of medical experts to diagnose hepatic anomalies. However, due to advancements in CT image acquisition protocol, CT scan data is growing and manual delineation of the liver and tumor from the CT volume becomes cumbersome and tedious for medical experts. Thus, the outcome becomes highly reliant on the operator's proficiency. Further, automatic liver and tumor segmentation from CT images is challenging due to complicated parenchyma, highly variable shape, and fewer voxel intensity variation among the liver, tumor, neighbouring organs, and discontinuity in liver boundaries. Recently deep learning (DL) exhibited extraordinary potential in medical image interpretation. Because of its effectiveness in performance advancement, the DL-based convolutional neural networks (CNN) gained significant interest in the medical realm. The proposed HFRU-Net is derived from the UNet architecture by modifying the skip pathways using local feature reconstruction and feature fusion mechanism that represents the detailed contextual information in the high-level features. Further, the fused features are adaptively recalibrated by learning the channel-wise interdependencies to acquire the prominent details of the modified high-level features using the squeeze-and-Excitation network (SENet). Also, in the bottleneck layer, we employed the atrous spatial pyramid pooling (ASPP) module to represent the multiscale features with dissimilar receptive fields to represent the rich spatial information in the low-level features. These amendments uplift the segmentation performance and reduce the computational complexity of the model than outperforming methods. The efficacy of the proposed model is proved by widespread experimentation on two datasets available publicly (LiTS and 3DIrcadb). The experimental result analysis illustrates that the proposed model has attained a dice similarity coefficient of 0.966 and 0.972 for liver segmentation and 0.771 and 0.776 for liver tumor segmentation on LiTS and the 3DIRCADb dataset. Further, the robustness of the HFRU-Net is confirmed on the independent LiTS challenge test dataset. The proposed model attained the global dice of 95.0% for liver segmentation and 61.4% for tumor segmentation which is comparable with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy发布了新的文献求助50
刚刚
2秒前
重要尔柳发布了新的文献求助10
2秒前
李健的小迷弟应助Dog采纳,获得10
2秒前
顺利顺利应助闻尔采纳,获得10
3秒前
5秒前
曲曲完成签到,获得积分10
5秒前
123发布了新的文献求助10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得30
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
充电宝应助西子阳采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
nozero应助科研通管家采纳,获得30
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
nozero应助科研通管家采纳,获得30
6秒前
冰魂应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
科研助手6应助科研通管家采纳,获得20
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
7秒前
失眠醉易应助科研通管家采纳,获得20
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
酷炫翠桃应助科研通管家采纳,获得20
7秒前
如故完成签到,获得积分10
7秒前
luzhigang完成签到 ,获得积分10
8秒前
星辰大海应助13508104971采纳,获得10
9秒前
Cherish完成签到,获得积分10
9秒前
慕青应助勤劳柠檬采纳,获得10
11秒前
NSZM980504发布了新的文献求助10
12秒前
12秒前
13秒前
rainhowk完成签到,获得积分10
13秒前
贵为我国的大姐完成签到,获得积分10
14秒前
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3817682
求助须知:如何正确求助?哪些是违规求助? 3360954
关于积分的说明 10410402
捐赠科研通 3079042
什么是DOI,文献DOI怎么找? 1690956
邀请新用户注册赠送积分活动 814272
科研通“疑难数据库(出版商)”最低求助积分说明 768068