Analysis of Raman Spectra by Using Deep Learning Methods in the Identification of Marine Pathogens

拉曼光谱 卷积神经网络 人工智能 深度学习 人工神经网络 鉴定(生物学) 核酸 功能(生物学) 计算机科学 化学 模式识别(心理学) 生物系统 机器学习 生物化学 生态学 生物 物理 光学 进化生物学
作者
Shixiang Yu,Xin Li,Weilai Lu,Hanfei Li,Yu Fu,Fanghua Liu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (32): 11089-11098 被引量:80
标识
DOI:10.1021/acs.analchem.1c00431
摘要

The need for efficient and accurate identification of pathogens in seafood and the environment has become increasingly urgent, given the current global pandemic. Traditional methods are not only time consuming but also lead to sample wastage. Here, we have proposed two new methods that involve Raman spectroscopy combined with a long short-term memory (LSTM) neural network and compared them with a method using a normal convolutional neural network (CNN). We used eight strains isolated from the marine organism Urechis unicinctus, including four kinds of pathogens. After the models were configured and trained, the LSTM methods that we proposed achieved average isolation-level accuracies exceeding 94%, not only meeting the requirement for identification but also indicating that the proposed methods were faster and more accurate than the normal CNN models. Finally, through a computational approach, we designed a loss function to explore the mechanism reflected by the Raman data, finding the Raman segments that most likely exhibited the characteristics of nucleic acids. These novel experimental results provide insights for developing additional deep learning methods to accurately analyze complex Raman data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左丘白桃完成签到,获得积分10
刚刚
hhxing发布了新的文献求助10
1秒前
2秒前
闫卫东发布了新的文献求助10
4秒前
4秒前
甜菜发布了新的文献求助30
5秒前
小小发布了新的文献求助150
6秒前
ww发布了新的文献求助10
6秒前
幽默觅翠完成签到,获得积分10
6秒前
7秒前
JUJUJU发布了新的文献求助10
9秒前
熠熠完成签到,获得积分10
9秒前
you发布了新的文献求助20
11秒前
存存发布了新的文献求助10
13秒前
13秒前
18秒前
李昕123发布了新的文献求助10
18秒前
浮游应助123采纳,获得10
19秒前
pluto应助WX采纳,获得10
19秒前
Oshur发布了新的文献求助10
19秒前
20秒前
DZY完成签到,获得积分10
21秒前
21秒前
asdfghjkl发布了新的文献求助10
21秒前
JUJUJU完成签到,获得积分10
21秒前
洛希完成签到,获得积分10
22秒前
浮游应助科研通管家采纳,获得10
23秒前
风清扬应助科研通管家采纳,获得30
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
风清扬应助科研通管家采纳,获得30
23秒前
华仔应助科研通管家采纳,获得20
23秒前
王77应助科研通管家采纳,获得150
23秒前
情怀应助科研通管家采纳,获得10
23秒前
小二郎应助科研通管家采纳,获得10
23秒前
田様应助科研通管家采纳,获得10
23秒前
可莉完成签到 ,获得积分10
23秒前
2131s发布了新的文献求助10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
c程序语言发布了新的文献求助10
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207406
求助须知:如何正确求助?哪些是违规求助? 4385353
关于积分的说明 13656706
捐赠科研通 4243935
什么是DOI,文献DOI怎么找? 2328474
邀请新用户注册赠送积分活动 1326166
关于科研通互助平台的介绍 1278375