人工智能
计算机视觉
合成孔径雷达
计算机科学
尺度不变特征变换
图像配准
散斑噪声
模式识别(心理学)
斑点图案
平滑的
噪音(视频)
特征提取
特征(语言学)
图像(数学)
语言学
哲学
作者
Mohammadreza Pourfard,Tahmineh Hosseinian,Roghayeh Saeidi,Seyed Ahmad Motamedi,Mohammad Javad Abdollahifard,Reza Mansoori,Reza Safabakhsh
标识
DOI:10.1109/tgrs.2021.3084411
摘要
Synthetic aperture radar (SAR) image registration is still a challenging task in remote sensing. The scale-invariant feature transform (SIFT) method and its extensions are most widely used feature detectors in SAR images. However, due to the presence of nonlinear speckle noise, some wrong features are chosen which directly influence the feature matching process. In this article, for the first time, the KAZE algorithm with a modified version of speeded-up robust features (SURF) descriptor is used for SAR image registration. It uses discrete stochastic second order nonlinear partial differential equations (PDEs) to model the SAR image's edge structure. KAZE uses nonlinear diffusion filtering to build up the scale levels of the SIFT descriptor. It preserves the edges while simultaneously decreasing the speckle noise in smoothing the image. Therefore, it captures the exact location of features in down-sampling and filtering stages of SIFT. Experimental results show that our proposed method has increased the localization accuracy and distinctiveness of feature extraction through the use of KAZE detector. Our method is also able to handle challenging cases in different image sources, different view angles, different image times, complex affine mapping, presence of blurring, and noise.
科研通智能强力驱动
Strongly Powered by AbleSci AI