Vehicle Detection From UAV Imagery With Deep Learning: A Review

深度学习 计算机科学 人工智能 卷积神经网络 任务(项目管理) 机器学习 推论 光学(聚焦) 一般化 多任务学习 工程类 数学 光学 物理 数学分析 系统工程
作者
Abdelmalek Bouguettaya,Hafed Zarzour,Ahmed Kechida,Amine Mohammed Taberkit
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (11): 6047-6067 被引量:106
标识
DOI:10.1109/tnnls.2021.3080276
摘要

Vehicle detection from unmanned aerial vehicle (UAV) imagery is one of the most important tasks in a large number of computer vision-based applications. This crucial task needed to be done with high accuracy and speed. However, it is a very challenging task due to many characteristics related to the aerial images and the used hardware, such as different vehicle sizes, orientations, types, density, limited datasets, and inference speed. In recent years, many classical and deep-learning-based methods have been proposed in the literature to address these problems. Handed engineering- and shallow learning-based techniques suffer from poor accuracy and generalization to other complex cases. Deep-learning-based vehicle detection algorithms achieved better results due to their powerful learning ability. In this article, we provide a review on vehicle detection from UAV imagery using deep learning techniques. We start by presenting the different types of deep learning architectures, such as convolutional neural networks, recurrent neural networks, autoencoders, generative adversarial networks, and their contribution to improve the vehicle detection task. Then, we focus on investigating the different vehicle detection methods, datasets, and the encountered challenges all along with the suggested solutions. Finally, we summarize and compare the techniques used to improve vehicle detection from UAV-based images, which could be a useful aid to researchers and developers to select the most adequate method for their needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
1秒前
cariess完成签到,获得积分10
2秒前
2秒前
3秒前
3080发布了新的文献求助10
4秒前
5秒前
yk发布了新的文献求助10
5秒前
6秒前
华仔应助achilles采纳,获得10
7秒前
啦啦啦啦啦完成签到,获得积分10
7秒前
7秒前
科目三应助cc采纳,获得10
7秒前
斯文败类应助Inory007采纳,获得10
7秒前
8秒前
8秒前
8秒前
慕青应助陶醉的大鼻子采纳,获得10
9秒前
FashionBoy应助慕迎蕾采纳,获得10
10秒前
李君关注了科研通微信公众号
10秒前
哈哈发布了新的文献求助10
10秒前
yekindar应助Agee_Feng采纳,获得10
10秒前
11秒前
123456发布了新的文献求助10
11秒前
洋洋洋耶发布了新的文献求助10
11秒前
可爱的函函应助楚慈采纳,获得10
11秒前
catherine完成签到,获得积分10
11秒前
科研通AI5应助幽默闹钟采纳,获得10
11秒前
11秒前
温东发布了新的文献求助150
12秒前
12秒前
默默的皮牙子完成签到,获得积分0
13秒前
酷酷巧蟹发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
feng发布了新的文献求助10
13秒前
岁岁菌完成签到,获得积分10
13秒前
白日焰火发布了新的文献求助10
14秒前
ding应助江湖笑采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4420974
求助须知:如何正确求助?哪些是违规求助? 3901253
关于积分的说明 12130789
捐赠科研通 3547226
什么是DOI,文献DOI怎么找? 1946502
邀请新用户注册赠送积分活动 986712
科研通“疑难数据库(出版商)”最低求助积分说明 882864