亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Vehicle Detection From UAV Imagery With Deep Learning: A Review

深度学习 计算机科学 人工智能 卷积神经网络 任务(项目管理) 机器学习 推论 光学(聚焦) 一般化 多任务学习 工程类 数学 光学 物理 数学分析 系统工程
作者
Abdelmalek Bouguettaya,Hafed Zarzour,Ahmed Kechida,Amine Mohammed Taberkit
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (11): 6047-6067 被引量:45
标识
DOI:10.1109/tnnls.2021.3080276
摘要

Vehicle detection from unmanned aerial vehicle (UAV) imagery is one of the most important tasks in a large number of computer vision-based applications. This crucial task needed to be done with high accuracy and speed. However, it is a very challenging task due to many characteristics related to the aerial images and the used hardware, such as different vehicle sizes, orientations, types, density, limited datasets, and inference speed. In recent years, many classical and deep-learning-based methods have been proposed in the literature to address these problems. Handed engineering- and shallow learning-based techniques suffer from poor accuracy and generalization to other complex cases. Deep-learning-based vehicle detection algorithms achieved better results due to their powerful learning ability. In this article, we provide a review on vehicle detection from UAV imagery using deep learning techniques. We start by presenting the different types of deep learning architectures, such as convolutional neural networks, recurrent neural networks, autoencoders, generative adversarial networks, and their contribution to improve the vehicle detection task. Then, we focus on investigating the different vehicle detection methods, datasets, and the encountered challenges all along with the suggested solutions. Finally, we summarize and compare the techniques used to improve vehicle detection from UAV-based images, which could be a useful aid to researchers and developers to select the most adequate method for their needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzzttt完成签到 ,获得积分10
2秒前
柯柯应助文件撤销了驳回
41秒前
去2完成签到 ,获得积分10
45秒前
CipherSage应助qingzx采纳,获得10
1分钟前
斯文败类应助泰裤辣采纳,获得10
1分钟前
1分钟前
檀江完成签到 ,获得积分10
2分钟前
2分钟前
lingzhiyi发布了新的文献求助10
2分钟前
2分钟前
zzzz完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
勤劳的小牛蛙完成签到,获得积分20
2分钟前
2分钟前
3分钟前
lalalatiancai完成签到,获得积分10
3分钟前
所所应助Fu采纳,获得10
3分钟前
3分钟前
Fu完成签到,获得积分10
3分钟前
Fu发布了新的文献求助10
3分钟前
3分钟前
一路微笑完成签到,获得积分10
4分钟前
testmanfuxk完成签到,获得积分10
4分钟前
4分钟前
SciGPT应助韩凡采纳,获得10
4分钟前
4分钟前
哈扎尔完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
韩凡发布了新的文献求助10
4分钟前
4分钟前
5分钟前
OuY发布了新的文献求助10
5分钟前
5分钟前
5分钟前
qingzx发布了新的文献求助10
5分钟前
李昕123完成签到 ,获得积分10
5分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827212
求助须知:如何正确求助?哪些是违规求助? 3369573
关于积分的说明 10456484
捐赠科研通 3089256
什么是DOI,文献DOI怎么找? 1699738
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251