Numerical research on a novel flow field design for vanadium redox flow batteries in microgrid

流动电池 微电网 可再生能源 储能 电池(电) 电解质 工艺工程 机械工程 材料科学 计算机科学 工程类 功率(物理) 电气工程 化学 热力学 电极 冶金 物理 物理化学
作者
Zebo Huang,Anle Mu
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:45 (10): 14579-14591 被引量:22
标识
DOI:10.1002/er.6710
摘要

The microgrid (MG) composed of vanadium redox flow battery (VRFB), wind energy, and photovoltaic (PV) renewable energy, it is an effective energy solution. It has attracted much attention because it can effectively solve the problems of randomness, intermittentness, and uncontrollability of renewable energy. The VRFB plays a vital role, and its performance determines the power quality of the MG. This research analyses the development status of renewable energy, the structure of MG, and the problems of VRFB in MG. It is proposed to improve the overall performance of the battery to make up for the defect of low energy density. As the performance of VRFB is strongly affected by the electrolyte's flow rate, designing a novel flow field structure to increase the flow rate and improve the electrolyte uniformity is very important to improve battery performance. The research designed the traditional rectangular cross-section into a trapezoidal cross-section to increase the flow rate of the electrolyte and improve the uniformity of the electrolyte. Numerical simulation results show that the new flow field structure can significantly improve the electrolyte flow, alleviate the concentration polarization of the battery, and improve battery performance and efficiency. Therefore, it is found that a reasonable flow field structure design is helpful for the optimization and application of VRFB's performance. Highlights The development status of renewable energy, the structure and configuration of the microgrid, and the existing problems of VRFB energy storage are analyzed. Establishing a VRFB model for electrochemistry and fluid mechanics. Designing a novel flow field structure to improve the overall performance of the battery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉的问旋应助lcy采纳,获得10
1秒前
可能发布了新的文献求助10
1秒前
西早07完成签到,获得积分10
2秒前
大孙完成签到,获得积分10
2秒前
3秒前
4秒前
jingyi发布了新的文献求助10
5秒前
animenz完成签到,获得积分10
5秒前
YIQI发布了新的文献求助10
5秒前
老夏完成签到,获得积分10
6秒前
高高完成签到,获得积分10
6秒前
左脸明媚完成签到,获得积分20
6秒前
科研通AI6应助小太阳采纳,获得10
7秒前
8秒前
9秒前
9秒前
阿明完成签到 ,获得积分10
10秒前
超超完成签到 ,获得积分10
12秒前
经竺完成签到,获得积分10
13秒前
乐乐应助可能采纳,获得10
13秒前
大反应釜发布了新的文献求助10
13秒前
田様应助Seyn采纳,获得10
14秒前
美好的源智完成签到,获得积分20
14秒前
14秒前
lcy发布了新的文献求助10
14秒前
15秒前
lifesci_ming发布了新的文献求助10
15秒前
16秒前
16秒前
YIQI完成签到,获得积分10
17秒前
MIN完成签到,获得积分10
17秒前
18秒前
i330发布了新的文献求助10
19秒前
刘吉瀚发布了新的文献求助10
19秒前
无敌霸王花应助萧雅采纳,获得20
19秒前
Nero发布了新的文献求助10
19秒前
可爱的函函应助osh111采纳,获得10
20秒前
22秒前
23秒前
亭瞳发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5195002
求助须知:如何正确求助?哪些是违规求助? 4377166
关于积分的说明 13631639
捐赠科研通 4232420
什么是DOI,文献DOI怎么找? 2321600
邀请新用户注册赠送积分活动 1319718
关于科研通互助平台的介绍 1270166